Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, USA.
J Chem Phys. 2018 Aug 28;149(8):084105. doi: 10.1063/1.5040353.
Multicomponent quantum chemistry allows the quantum mechanical treatment of electrons and specified protons on the same level. Typically the goal is to identify a self-consistent-field (SCF) solution that is the global minimum associated with the molecular orbital coefficients of the underlying Hartree-Fock (HF) or density functional theory (DFT) calculation. To determine whether the solution is a minimum or a saddle point, herein we derive the stability conditions for multicomponent HF and DFT in the nuclear-electronic orbital (NEO) framework. The gradient is always zero for an SCF solution, whereas the Hessian must be positive semi-definite for the solution to be a minimum rather than a saddle point. The stability matrices for NEO-HF and NEO-DFT have the same matrix structures, which are identical to the working matrices of their corresponding linear response time-dependent theories (NEO-TDHF and NEO-TDDFT) but with a different metric. A negative eigenvalue of the stability matrix is a necessary but not sufficient condition for the corresponding NEO-TDHF or NEO-TDDFT working equation to have an imaginary eigenvalue solution. Electron-proton systems could potentially exhibit three types of instabilities: electronic, protonic, and electron-proton vibronic instabilities. The internal and external stabilities for theories with different constraints on the spin and spatial orbitals can be analyzed. This stability analysis is a useful tool for characterizing SCF solutions and is helpful when searching for lower-energy solutions. Initial applications to HCN, HNC, and 2-cyanomalonaldehyde, in conjunction with NEO ∆SCF calculations, highlight possible connections between stationary points in nuclear coordinate space for conventional electronic structure calculations and stationary points in orbital space for NEO calculations.
多分量量子化学允许在同一水平上对电子和指定的质子进行量子力学处理。通常,目标是确定一个自洽场 (SCF) 解,该解是与基础 Hartree-Fock (HF) 或密度泛函理论 (DFT) 计算的分子轨道系数相关的全局最小值。为了确定解是最小值还是鞍点,我们在此推导了核电子轨道 (NEO) 框架中多分量 HF 和 DFT 的稳定性条件。对于 SCF 解,梯度总是为零,而对于解是最小值而不是鞍点,Hessian 必须是半正定的。NEO-HF 和 NEO-DFT 的稳定性矩阵具有相同的矩阵结构,与相应的线性响应含时理论 (NEO-TDHF 和 NEO-TDDFT) 的工作矩阵相同,但具有不同的度量。稳定性矩阵的负特征值是相应的 NEO-TDHF 或 NEO-TDDFT 工作方程具有虚特征值解的必要但非充分条件。电子-质子系统可能表现出三种类型的不稳定性:电子、质子和电子-质子振动态不稳定性。可以分析对自旋和空间轨道有不同限制的理论的内部和外部稳定性。这种稳定性分析是表征 SCF 解的有用工具,在寻找更低能量的解时很有帮助。最初应用于 HCN、HNC 和 2-氰基丙醛,并结合 NEO ∆SCF 计算,突出了常规电子结构计算中核坐标空间中的稳定点和 NEO 计算中轨道空间中的稳定点之间的可能联系。