Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, Lyon, France.
EMR 3738, Faculté de Médecine Lyon-Sud, Université Lyon 1, Chemin du Grand Revoyet, BP 12, 69921, Oullins, Lyon, France.
Clin Pharmacokinet. 2019 Apr;58(4):503-523. doi: 10.1007/s40262-018-0711-0.
The In Vivo Mechanistic Static Model (IMSM) is a powerful method used to predict the magnitude of drug-drug interactions (DDIs) mediated by cytochromes. The objective of this study was to extend the IMSM paradigm to DDIs mediated by efflux transporters and cytochromes.
First, a generic model for this kind of interaction was devised. A flexible approach was then developed to estimate the characteristic parameters [the contribution ratios (CRs) and inhibition or induction potencies (IXs)] from clinical data by non-linear regression. Next, this approach was applied to the DDIs mediated by P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4/3A5 in a large set of victim drugs and interactors. Lastly, the model and associated parameters were used to identify the DDIs most at risk of overexposure.
A total of 25 substrates and 26 interactors (three inducers, 23 inhibitors) could be considered in the regression analysis. The number of observations [area under the plasma concentration-time curve ratios or renal clearance ratios (Robs)] was 138. Fifty CRs and 57 IXs were estimated. The proportions of predictions within 0.67- to 1.5-fold Robs and within 0.5- to 2-fold Robs were 79% and 93% for the internal validation and 76% and 88% for the external validation, respectively. The median fold error was 0.98 (the ideal value is 1) and the interquartile range of the fold error was 0.36. The relative standard error of parameter estimates was a maximum of 15%.
The IMSM approach was successfully extended to DDIs mediated by P-gp and CYP3A4/3A5. The method revealed good predictive performances by internal and external validation.
体内机制静态模型(IMSM)是一种强大的方法,用于预测细胞色素介导的药物相互作用(DDI)的程度。本研究的目的是将 IMSM 范式扩展到外排转运体和细胞色素介导的 DDI。
首先,设计了一种用于此类相互作用的通用模型。然后,开发了一种灵活的方法,通过非线性回归从临床数据中估计特征参数[贡献比(CRs)和抑制或诱导效力(IXs)]。接下来,将该方法应用于一组大的受体内质网 P 糖蛋白(P-gp)和细胞色素 P450(CYP)3A4/3A5 介导的 DDI。最后,使用模型和相关参数来确定最容易出现药物暴露过度的 DDI。
在回归分析中可以考虑 25 种底物和 26 种(3 种诱导剂,23 种抑制剂)相互作用剂。观察数量[血浆浓度-时间曲线下面积比或肾清除率比(Robs)]为 138。估计了 50 个 CR 和 57 个 IX。内部验证的 Robs 比在 0.67-1.5 倍和 Robs 比在 0.5-2 倍内的预测比例分别为 79%和 93%,外部验证分别为 76%和 88%。中位数折叠误差为 0.98(理想值为 1),折叠误差的四分位间距为 0.36。参数估计的相对标准误差最大为 15%。
IMSM 方法成功扩展到 P-gp 和 CYP3A4/3A5 介导的 DDI。该方法通过内部和外部验证显示出良好的预测性能。