Gabriel Laurence, Tod Michel, Goutelle Sylvain
Service Pharmaceutique, Hôpital Gériatrique Pierre Garraud, Hospices Civils de Lyon, 136 rue du Commandant Charcot, 69322, Lyon Cedex 05, France.
ISPB-Faculté de Pharmacie de Lyon, Université de Lyon, Université Lyon 1, Lyon, France.
Clin Pharmacokinet. 2016 Aug;55(8):977-90. doi: 10.1007/s40262-016-0371-x.
A simple method to predict drug-drug interactions mediated by cytochrome P450 enzymes (CYPs) on the basis of in vivo data has been previously applied for several CYP isoforms but not for CYP1A2. The objective of this study was to extend this method to drug interactions caused by CYP1A2 inhibitors and inducers.
First, initial estimates of the model parameters were obtained using data from the literature. Then, an external validation of these initial estimates was performed by comparing model-based predicted area under the concentration-time curve (AUC) ratios with observations not used in the initial estimation. Third, refined estimates of the model parameters were obtained by Bayesian orthogonal regression using Winbugs software, and predicted AUC ratios were compared with all available observations. Finally, predicted AUC ratios for all possible substrates-inhibitors and substrates-inducers were computed.
A total of 100 AUC ratios were retrieved from the literature. Model parameters were estimated for 19 CYP1A2 substrate drugs, 26 inhibitors and seven inducers, including tobacco smoking. In the external validation, the mean prediction error of the AUC ratios was -0.22, while the mean absolute error was 0.97 (37 %). After the Bayesian estimation step, the mean prediction error was 0.11, while the mean absolute error was 0.43 (22 %). The AUC ratios for 625 possible interactions were computed.
This analysis provides insights into the interaction profiles of drugs poorly studied so far and can help to identify and manage significant interactions in clinical practice. Those results are now available to the community via a web tool ( http://www.ddi-predictor.org ).
此前已将一种基于体内数据预测细胞色素P450酶(CYP)介导的药物相互作用的简单方法应用于几种CYP亚型,但未应用于CYP1A2。本研究的目的是将该方法扩展至由CYP1A2抑制剂和诱导剂引起的药物相互作用。
首先,使用文献数据获得模型参数的初始估计值。然后,通过将基于模型预测的浓度-时间曲线下面积(AUC)比值与初始估计中未使用的观察值进行比较,对这些初始估计值进行外部验证。第三,使用Winbugs软件通过贝叶斯正交回归获得模型参数的精确估计值,并将预测的AUC比值与所有可用观察值进行比较。最后,计算所有可能的底物-抑制剂和底物-诱导剂组合的预测AUC比值。
从文献中检索到总共100个AUC比值。对19种CYP1A2底物药物、26种抑制剂和7种诱导剂(包括吸烟)的模型参数进行了估计。在外部验证中,AUC比值的平均预测误差为-0.22,而平均绝对误差为0.97(37%)。经过贝叶斯估计步骤后,平均预测误差为0.11,而平均绝对误差为0.43(22%)。计算了625种可能相互作用的AUC比值。
该分析为目前研究较少的药物相互作用特征提供了见解,并有助于在临床实践中识别和管理显著的相互作用。现在可通过网络工具(http://www.ddi-predictor.org)向公众提供这些结果。