Suppr超能文献

3D生物打印与干细胞

3D Bioprinting and Stem Cells.

作者信息

Moore Caitlyn A, Shah Niloy N, Smith Caroline P, Rameshwar Pranela

机构信息

Division of Hematology/Oncology, Department of Medicine, University of Medicine and Dentistry of New Jersey-Rutgers-New Jersey Medical School, Newark, NJ, USA.

Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.

出版信息

Methods Mol Biol. 2018;1842:93-103. doi: 10.1007/978-1-4939-8697-2_7.

Abstract

Three-dimensional (3D) in vitro modeling is increasingly relevant as two-dimensional (2D) cultures have been recognized with limits to recapitulate the complex endogenous conditions in the body. Additionally, fabrication technology is more accessible than ever. Bioprinting, in particular, is an additive manufacturing technique that expands the capabilities of in vitro studies by precisely depositing cells embedded within a 3D biomaterial scaffold that acts as temporary extracellular matrix (ECM). More importantly, bioprinting has vast potential for customization. This allows users to manipulate parameters such as scaffold design, biomaterial selection, and cell types, to create specialized biomimetic 3D systems.The development of a 3D system is important to recapitulate the bone marrow (BM) microenvironment since this particular organ cannot be mimicked with other methods such as organoids. The 3D system can be used to study the interactions between native BM cells and metastatic breast cancer cells (BCCs). Although not perfect, such a system can recapitulate the BM microenvironment. Mesenchymal stem cells (MSCs), a key population within the BM, are known to communicate with BCCs invading the BM and to aid in their transition into dormancy. Dormant BCCs are cycling quiescent and resistant to chemotherapy, which allows them to survive in the BM to resurge even after decades. These persisting BCCs have been identified as the stem cell subset. These BCCs exhibit self-renewal and can be induced to differentiate. More importantly, this BCC subset can initiate tumor formation, exert chemoresistance, and form gap junction with endogenous BM stroma, including MSCs. The bioprinted model detailed in this chapter creates a MSC-BC stem cell coculture system to study intercellular interactions in a model that is more representative of the endogenous 3D microenvironment than conventional 2D cultures. The method can reliably seed primary BM MSCs and BC stem cells within a bioprinted scaffold fabricated from CELLINK Bioink. Since bioprinting is a highly customizable technique, parameters described in this method (i.e., cell-cell ratio, scaffold dimensions) can easily be altered to serve other applications, including studies on hematopoietic regulation.

摘要

随着二维(2D)培养被认为在重现体内复杂的内源性条件方面存在局限性,三维(3D)体外建模变得越来越重要。此外,制造技术比以往任何时候都更容易获得。特别是生物打印,它是一种增材制造技术,通过精确沉积嵌入3D生物材料支架内的细胞来扩展体外研究的能力,该支架充当临时细胞外基质(ECM)。更重要的是,生物打印具有巨大的定制潜力。这允许用户操纵诸如支架设计、生物材料选择和细胞类型等参数,以创建专门的仿生3D系统。3D系统的开发对于重现骨髓(BM)微环境很重要,因为这个特定器官无法用类器官等其他方法模拟。该3D系统可用于研究天然BM细胞与转移性乳腺癌细胞(BCC)之间的相互作用。虽然并不完美,但这样的系统可以重现BM微环境。间充质干细胞(MSC)是BM中的关键细胞群,已知它与侵入BM的BCC进行通信,并帮助它们进入休眠状态。休眠的BCC处于细胞周期静止状态且对化疗有抗性,这使它们能够在BM中存活,甚至几十年后仍能复发。这些持续存在的BCC已被确定为干细胞亚群。这些BCC表现出自我更新能力,并可被诱导分化。更重要的是,这个BCC亚群可以启动肿瘤形成、产生化疗抗性,并与包括MSC在内的内源性BM基质形成间隙连接。本章详细介绍的生物打印模型创建了一个MSC - BC干细胞共培养系统,以研究细胞间相互作用,该模型比传统的2D培养更能代表内源性3D微环境。该方法可以在由CELLINK生物墨水制成的生物打印支架内可靠地接种原代BM MSC和BC干细胞。由于生物打印是一种高度可定制的技术,该方法中描述的参数(即细胞 - 细胞比例、支架尺寸)可以很容易地改变,以用于其他应用,包括造血调节研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验