Wang Kang, Wang Yucheng, Pera-Titus Marc
Cardiff Catalysis Institute, Cardiff University, Cardiff CF10 3AT, UK.
Chem Soc Rev. 2024 Dec 9;53(24):11701-11724. doi: 10.1039/d3cs00535f.
Electrochemistry plays a pivotal role in a vast number of domains spanning from sensing and manufacturing to energy storage, environmental conservation, and healthcare. Electrochemical applications encompassing gaseous or organic substrates encounter shortcomings ascribed to high mass transfer/internal resistances and low solubility in aqueous electrolytes, resulting in high overpotentials. In practice, strong acids and expensive organic electrolytes are required to promote charge transfer in electrochemical cells, resulting in a high carbon footprint. Liquid-liquid (L-L) and gas-liquid (G-L) dispersions involve the dispersion of a nano/micro gas or liquid into a continuous liquid phase such as micelles, (macro)emulsions, microemulsions, and microfoams stabilised by surface-active agents such as surfactants and colloidal particles. These dispersions hold promise in addressing the drawbacks of electrochemical reactions by fostering the interfacial surface area between immiscible reagents and mass transfer of electroactive organic and gas reactants and products from/to the bulk to/from the electrode surface. This tutorial review provides a taxonomy of liquid-liquid and gas-liquid dispersions for applications in electrochemistry, with emphasis on their assets and challenges in industrially relevant reactions for fine chemistry and depollution.
电化学在从传感、制造到能量存储、环境保护和医疗保健等众多领域中都发挥着关键作用。涉及气态或有机底物的电化学应用存在一些缺点,这些缺点归因于传质/内阻高以及在水性电解质中的溶解度低,从而导致过电位较高。在实际应用中,需要强酸和昂贵的有机电解质来促进电化学电池中的电荷转移,这导致了高碳足迹。液-液(L-L)和气-液(G-L)分散体涉及将纳米/微气体或液体分散到连续液相中,例如由表面活性剂和胶体颗粒等表面活性剂稳定的胶束、(宏观)乳液、微乳液和微泡沫。这些分散体有望通过增加不混溶试剂之间的界面表面积以及促进电活性有机和气体反应物及产物在本体与电极表面之间的传质,来解决电化学反应的缺点。本教程综述提供了用于电化学应用的液-液和气-液分散体的分类,重点介绍了它们在精细化学和去污染等工业相关反应中的优点和挑战。