Sun Hong, Tang Qiang, Li Yang, Liang Zi-Han, Li Feng-He, Li Wen-Wei, Yu Han-Qing
Environ Sci Technol. 2023 Jan 10;57(1):674-684. doi: 10.1021/acs.est.2c07697. Epub 2022 Dec 28.
Microbial extracellular electron transfer (EET) is the basis for many microbial processes involved in element geochemical recycling, bioenergy harvesting, and bioremediation, including the technique for remediating U(VI)-contaminated environments. However, the low EET rate hinders its full potential from being fulfilled. The main challenge for engineering microbial EET is the difficulty in optimizing cell resource allocation for EET investment and basic metabolism and the optimal coordination of the different EET pathways. Here, we report a novel combinatorial optimization strategy with a physiologically adapted regulatory platform. Through exploring the physiologically adapted regulatory elements, a 271.97-fold strength range, autonomous, and dynamic regulatory platform was established for , a prominent electrochemically active bacterium. Both direct and mediated EET pathways are modularly reconfigured and tuned at various intensities with the regulatory platform, which were further assembled combinatorically. The optimal combinations exhibit up to 16.12-, 4.51-, and 8.40-fold improvements over the control in the maximum current density (1009.2 mA/m) of microbial electrolysis cells and the voltage output (413.8 mV) and power density (229.1 mW/m) of microbial fuel cells. In addition, the optimal strains exhibited up to 6.53-fold improvement in the radionuclide U(VI) removal efficiency. This work provides an effective and feasible approach to boost microbial EET performance for environmental applications.
微生物细胞外电子转移(EET)是许多参与元素地球化学循环、生物能源获取和生物修复的微生物过程的基础,包括修复受U(VI)污染环境的技术。然而,低EET速率阻碍了其全部潜力的实现。工程化微生物EET的主要挑战在于难以优化细胞资源分配以用于EET投资和基本代谢,以及难以实现不同EET途径的最佳协调。在此,我们报告了一种具有生理适应性调控平台的新型组合优化策略。通过探索生理适应性调控元件,为一种著名的电化学活性细菌建立了一个强度范围为271.97倍、自主且动态的调控平台。直接和介导的EET途径都通过该调控平台以各种强度进行模块化重新配置和调整,并进一步进行组合组装。在微生物电解池的最大电流密度(1009.2 mA/m²)、微生物燃料电池的电压输出(413.8 mV)和功率密度(229.1 mW/m²)方面,最佳组合相对于对照分别表现出高达16.12倍、4.51倍和8.40倍的提升。此外,最佳菌株在放射性核素U(VI)去除效率方面表现出高达6.53倍的提升。这项工作为提高微生物EET性能以用于环境应用提供了一种有效且可行的方法。