Biology Centre CAS, Soil and Water Infrastructure, Na Sádkách 7, 370 05 České Budějovice, Czech Republic.
Environ Sci Process Impacts. 2018 Oct 17;20(10):1414-1426. doi: 10.1039/c8em00328a.
Lake Medard is an oligotrophic post-mining lake characterised by ferruginous bottom waters, with marked redox gradients resulting from iron (Fe) and nitrogen (N) speciation and accompanying depth-dependent variations in the abundance of volatile fatty acids (VFAs), pH and alkalinity. The lacustrine system is meromictic, featuring a dysoxic hypolimnion and an anoxic monimolimnion with relatively high concentrations of sulfate (SO42-, 19 ± 2 mM) and Fe(ii) (127 ± 17 μM). An increase in dissolved manganese is also observed with increasing depth, together with a general lack of sulfide, which can only be detected at the sediment-water interface at concentrations of ∼0.30 μM. In the hypolimnion, nitrate (NO3-) becomes progressively depleted and ammonium (NH4+) dominates the dissolved N inventory (up to 185 ± 13 μM). Here we describe the biogeochemical disequilibrium conditions governing critical mineralogical transformations involving Fe and phosphorus (P) co-precipitation in the dysoxic-to-anoxic bottom water column. A combination of mineral equilibrium modelling and synchrotron-based diffraction and spectroscopic techniques was applied to investigate the minerals comprising the upper anoxic sediments. The combined dataset indicates that elemental recycling on and below the hypolimnion promote the precipitation of FeOOH polymorphs that accumulate as heterogeneous mineral clusters. Changes in the relative abundance of bacterioplankton taxa with increasing water depth point to a link between the activity of certain members of Proteobacteria and the co-recycling of carbon (C), N, and Fe stocks. Such a redox recycling process seems to lead to P stabilisation into organic-rich Fe-(oxyhydr)oxides near and above the anoxic sediment-water interface (SWI).
梅达湖是一个贫营养化的矿山后湖泊,其特点是底水呈铁(Fe)质,氧化还原梯度明显,这是由于 Fe 和 N 的形态以及挥发性脂肪酸(VFAs)、pH 值和碱度随深度的变化而引起的。湖泊系统为分层湖,具有贫氧上层水和缺氧深层水,硫酸盐(SO42-,19±2mM)和 Fe(ii)(127±17μM)浓度相对较高。随着深度的增加,溶解锰的浓度也会增加,同时通常缺乏硫化物,只能在沉积物-水界面处检测到浓度约为 0.30μM 的硫化物。在缺氧层,硝酸盐(NO3-)逐渐耗尽,铵(NH4+)占溶解 N 库存的主导地位(高达 185±13μM)。在这里,我们描述了控制关键矿物转化的生物地球化学不平衡条件,这些转化涉及 Fe 和磷(P)在贫氧到缺氧底层水柱状物中的共沉淀。矿物平衡建模和基于同步加速器的衍射和光谱技术的组合被应用于研究上缺氧沉积物中包含的矿物。综合数据集表明,缺氧层及其以下的元素循环促进了 FeOOH 多晶型物的沉淀,这些多晶型物作为异质矿物簇积累。随着水深的增加,细菌浮游生物分类群的相对丰度的变化表明,某些变形菌门成员的活动与 C、N 和 Fe 库存的共同再循环之间存在联系。这种氧化还原再循环过程似乎导致 P 在缺氧沉积物-水界面(SWI)附近和上方稳定到富含有机物质的 Fe-(oxyhydr)氧化物中。