Suppr超能文献

一种新型的计算机模拟模型探索了 Hypomicrobium spp 中的 LanM 同源物。

A novel in-silico model explores LanM homologs among Hyphomicrobium spp.

机构信息

Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.

Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia.

出版信息

Commun Biol. 2024 Nov 20;7(1):1539. doi: 10.1038/s42003-024-07258-3.

Abstract

Investigating microorganisms in metal-enriched environments holds the potential to revolutionize the sustainable recovery of critical metals such as lanthanides (Ln). We observe Hyphomicrobium spp. as part of a Fe/Mn-oxidizing consortia native to the ferruginous bottom waters of a Ln-enriched lake in Czechia. Notably, one species shows similarities to recently discovered bacteria expressing proteins with picomolar Ln affinity. This finding was substantiated by developing an in-silico ionic competition model and recombinant expression of a homolog protein (Hm-LanM) from Hyphomicrobium methylovorum. Biochemical assays validate Hm-LanM preference for lighter Ln ions (from lanthanum to gadolinium). This is comparable to established prototypes. Bioinformatics analyses further uncover additional H. methylovorum metabolic biomolecules in genomic proximity to Hm-LanM analogously dependent on Ln, including an outer membrane receptor that binds Ln-chelating siderophores. These combined observations underscore the remarkable strategy of Hyphomicrobium spp. for thriving in relatively Ln enriched zones of metal-polluted environments.

摘要

研究富含金属环境中的微生物有可能彻底改变镧系元素(Ln)等关键金属的可持续回收。我们观察到铁锰氧化共生体中的食烷菌属(Hyphomicrobium spp.),这些共生体是在捷克富含镧系元素的湖泊的高铁底水中发现的。值得注意的是,其中一种与最近发现的表达对镧系元素具有皮摩尔亲和力的蛋白质的细菌具有相似性。这一发现通过开发一种离子竞争模型和重组表达来自甲基营养型食烷菌(Hyphomicrobium methylovorum)的同源蛋白(Hm-LanM)得到了证实。生化分析验证了 Hm-LanM 对较轻的镧系元素(从镧到钆)的偏好。这与已建立的原型相当。生物信息学分析还进一步揭示了基因组中与 Hm-LanM 类似的、同样依赖于镧系元素的其他甲基营养型食烷菌代谢生物分子,包括一种外膜受体,它可以结合镧系元素螯合的铁载体。这些综合观察结果突出了食烷菌属在金属污染环境中相对富含镧系元素的区域中茁壮成长的惊人策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5a51/11576760/8058a76eef13/42003_2024_7258_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验