Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.
Institute of Ecological Problems of the North, Ural Branch, Russian Academy of Sciences, Arkhangelsk, Russia.
Environ Microbiol. 2017 Feb;19(2):659-672. doi: 10.1111/1462-2920.13591. Epub 2016 Dec 8.
Biogeochemical, isotope geochemical and microbiological investigation of Lake Svetloe (White Sea basin), a meromictic freshwater was carried out in April 2014, when ice thickness was ∼0.5 m, and the ice-covered water column contained oxygen to 23 m depth. Below, the anoxic water column contained ferrous iron (up to 240 μμM), manganese (60 μM), sulfide (up to 2 μM) and dissolved methane (960 μM). The highest abundance of microbial cells revealed by epifluorescence microscopy was found in the chemocline (redox zone) at 23-24.5 m. Oxygenic photosynthesis exhibited two peaks: the major one (0.43 μmol C L day ) below the ice and the minor one in the chemocline zone, where cyanobacteria related to Synechococcus rubescens were detected. The maximum of anoxygenic photosynthesis (0.69 μmol C L day ) at the oxic/anoxic interface, for which green sulfur bacteria Chlorobium phaeoclathratiforme were probably responsible, exceeded the value for oxygenic photosynthesis. Bacterial sulfate reduction peaked (1.5 μmol S L day ) below the chemocline zone. The rates of methane oxidation were as high as 1.8 μmol CH L day at the oxi/anoxic interface and much lower in the oxic zone. Small phycoerythrin-containing Synechococcus-related cyanobacteria were probably involved in accumulation of metal oxides in the redox zone.
2014 年 4 月,当冰层厚度约为 0.5 米且冰盖下的水柱含氧深度达 23 米时,对白海流域的斯韦特洛耶湖(Svetloe Lake)进行了生物地球化学、同位素地球化学和微生物学调查。在缺氧水层中,亚铁(高达 240 μM)、锰(60 μM)、硫化物(高达 2 μM)和溶解态甲烷(960 μM)含量较高。荧光显微镜下发现的微生物细胞丰度最高的区域是在 23-24.5 米的化变层(氧化还原带)。好氧光合作用表现出两个峰值:一个主要峰值(0.43 μmol C L -1 day -1)位于冰层下方,另一个较小的峰值出现在化变层区,在那里检测到与聚球藻(Synechococcus rubescens)相关的蓝细菌。在好氧/缺氧界面处,无氧光合作用的最大值(0.69 μmol C L -1 day -1)超过了好氧光合作用,可能与绿硫细菌(Chlorobium phaeoclathratiforme)有关。细菌硫酸盐还原作用在化变层区下方达到峰值(1.5 μmol S L -1 day -1)。甲烷氧化速率在好氧/缺氧界面处高达 1.8 μmol CH 4 L -1 day -1,而在好氧区则低得多。在氧化还原带中,可能有含有藻红蛋白的小型聚球藻相关蓝细菌参与了金属氧化物的积累。