Shenzhen Key Laboratory of Organic Pollution Prevention and Control, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), China.
Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, Hong Kong, China.
Water Res. 2018 Nov 15;145:631-639. doi: 10.1016/j.watres.2018.08.065. Epub 2018 Sep 1.
Adsorbable organic halogen (AOX) is a bulk organic parameter conventionally used to indicate all adsorbable halogenated organic disinfection byproducts formed in disinfected water. Analytically, AOX is determined by three sequential steps: 1) concentration and separation of AOX from halides with activated carbon, 2) conversion of AOX into halides with pyrolysis, and 3) quantification of halides via microcoulometry or ion chromatography (IC). Because the approach is relatively costly and cannot effectively recover non-adsorbable compounds, we herein proposed a facile and green pretreatment tool to measure the nonionic portion of total organic halogen (NTOX) with a new three-step approach: 1) separation of NTOX and halides with electrodialysis (ED), 2) conversion of NTOX into halides with ultraviolet, and 3) analysis of halides with IC. To verify this proposal, this study presented the efficiency of ED in separating halides and NTOX under a variety of operational and environmental conditions. The results showed that ED removed ≥98.5% of fluoride, chloride, bromide, and iodide from all tested waters (up to 1000 mg-X/L) within 1.5 h. Meanwhile, ED recovered an average of 87.9% of fourteen small molecular weight model compounds with each at 100 μg/L. By using electrospray ionization-triple quadrupole mass spectrometry, the whole pictures of high molecular weight compounds in a chlorinated drinking water before and after ED pretreatment were compared, which revealed 79.7% and 83.6% recoveries of overall polar chlorinated and brominated compounds, respectively. In addition, the quantity and property of the dissolved organic matter were largely maintained by ED, and the retained organics may be used for later characterization. The study hence presents a novel use of ED as a pretreatment tool to enable subsequent NTOX measurement.
可吸附有机卤素 (AOX) 是一种常用的总体有机参数,用于指示消毒水中形成的所有可吸附卤代有机消毒副产物。分析上,AOX 通过三个连续步骤来确定:1)用活性炭从卤化物中浓缩和分离 AOX,2)用热解将 AOX 转化为卤化物,3)通过微库仑法或离子色谱法 (IC) 定量卤化物。由于该方法相对昂贵,并且不能有效回收不可吸附的化合物,因此我们在此提出了一种简便、绿色的预处理工具,使用新的三步法来测量总有机卤素 (NTOX) 的非离子部分:1)用电渗析 (ED) 分离 NTOX 和卤化物,2)用紫外线将 NTOX 转化为卤化物,3)用 IC 分析卤化物。为了验证这一方案,本研究在各种操作和环境条件下,展示了 ED 分离卤化物和 NTOX 的效率。结果表明,ED 在 1.5 小时内从所有测试水中(高达 1000 mg-X/L)去除了≥98.5%的氟化物、氯化物、溴化物和碘化物。同时,ED 回收了 14 种小分子模型化合物的平均 87.9%,每种化合物的浓度为 100 μg/L。通过使用电喷雾电离-三重四极杆质谱,比较了氯化饮用水中高分子量化合物在 ED 预处理前后的整体图像,分别发现整体极性氯化和溴化化合物的回收率分别为 79.7%和 83.6%。此外,ED 很大程度上保持了溶解有机物的数量和性质,保留的有机物可用于以后的表征。因此,该研究提出了 ED 作为预处理工具的新用途,以实现随后的 NTOX 测量。