Cavazza Marc
Department of Computing and Information Systems, University of Greenwich, London SE10 9LS, UK.
Brain Sci. 2018 Aug 31;8(9):166. doi: 10.3390/brainsci8090166.
Several researchers have proposed a new application for human augmentation, which is to provide human supervision to autonomous artificial intelligence (AI) systems. In this paper, we introduce a framework to implement this proposal, which consists of using Brain⁻Computer Interfaces (BCI) to influence AI computation via some of their core algorithmic components, such as heuristic search. Our framework is based on a joint analysis of philosophical proposals characterising the behaviour of autonomous AI systems and recent research in cognitive neuroscience that support the design of appropriate BCI. Our framework is defined as a motivational approach, which, on the AI side, influences the shape of the solution produced by heuristic search using a BCI motivational signal reflecting the user's disposition towards the anticipated result. The actual mapping is based on a measure of prefrontal asymmetry, which is translated into a non-admissible variant of the heuristic function. Finally, we discuss results from a proof-of-concept experiment using functional near-infrared spectroscopy (fNIRS) to capture prefrontal asymmetry and control the progression of AI computation of traditional heuristic search problems.
几位研究人员提出了人类增强的一种新应用,即对自主人工智能(AI)系统进行人类监督。在本文中,我们介绍了一个实施该提议的框架,该框架包括使用脑机接口(BCI)通过自主人工智能系统的一些核心算法组件(如启发式搜索)来影响人工智能计算。我们的框架基于对表征自主人工智能系统行为的哲学提议和支持适当脑机接口设计的认知神经科学最新研究的联合分析。我们的框架被定义为一种激励方法,在人工智能方面,它使用反映用户对预期结果倾向的脑机接口激励信号来影响启发式搜索产生的解决方案的形式。实际映射基于前额叶不对称性的度量,该度量被转换为启发式函数的不可接受变体。最后,我们讨论了一个概念验证实验的结果,该实验使用功能近红外光谱(fNIRS)来捕捉前额叶不对称性并控制传统启发式搜索问题的人工智能计算进程。