Suppr超能文献

一种脑机接口控制的启发式搜索激励模型。

A Motivational Model of BCI-Controlled Heuristic Search.

作者信息

Cavazza Marc

机构信息

Department of Computing and Information Systems, University of Greenwich, London SE10 9LS, UK.

出版信息

Brain Sci. 2018 Aug 31;8(9):166. doi: 10.3390/brainsci8090166.

Abstract

Several researchers have proposed a new application for human augmentation, which is to provide human supervision to autonomous artificial intelligence (AI) systems. In this paper, we introduce a framework to implement this proposal, which consists of using Brain⁻Computer Interfaces (BCI) to influence AI computation via some of their core algorithmic components, such as heuristic search. Our framework is based on a joint analysis of philosophical proposals characterising the behaviour of autonomous AI systems and recent research in cognitive neuroscience that support the design of appropriate BCI. Our framework is defined as a motivational approach, which, on the AI side, influences the shape of the solution produced by heuristic search using a BCI motivational signal reflecting the user's disposition towards the anticipated result. The actual mapping is based on a measure of prefrontal asymmetry, which is translated into a non-admissible variant of the heuristic function. Finally, we discuss results from a proof-of-concept experiment using functional near-infrared spectroscopy (fNIRS) to capture prefrontal asymmetry and control the progression of AI computation of traditional heuristic search problems.

摘要

几位研究人员提出了人类增强的一种新应用,即对自主人工智能(AI)系统进行人类监督。在本文中,我们介绍了一个实施该提议的框架,该框架包括使用脑机接口(BCI)通过自主人工智能系统的一些核心算法组件(如启发式搜索)来影响人工智能计算。我们的框架基于对表征自主人工智能系统行为的哲学提议和支持适当脑机接口设计的认知神经科学最新研究的联合分析。我们的框架被定义为一种激励方法,在人工智能方面,它使用反映用户对预期结果倾向的脑机接口激励信号来影响启发式搜索产生的解决方案的形式。实际映射基于前额叶不对称性的度量,该度量被转换为启发式函数的不可接受变体。最后,我们讨论了一个概念验证实验的结果,该实验使用功能近红外光谱(fNIRS)来捕捉前额叶不对称性并控制传统启发式搜索问题的人工智能计算进程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4499/6162724/ba6127903eae/brainsci-08-00166-g001.jpg

相似文献

1
A Motivational Model of BCI-Controlled Heuristic Search.
Brain Sci. 2018 Aug 31;8(9):166. doi: 10.3390/brainsci8090166.
2
BCI Control of Heuristic Search Algorithms.
Front Neuroinform. 2017 Jan 31;11:6. doi: 10.3389/fninf.2017.00006. eCollection 2017.
3
Prefrontal Asymmetry BCI Neurofeedback Datasets.
Front Neurosci. 2020 Dec 18;14:601402. doi: 10.3389/fnins.2020.601402. eCollection 2020.
4
Interface, interaction, and intelligence in generalized brain-computer interfaces.
Trends Cogn Sci. 2021 Aug;25(8):671-684. doi: 10.1016/j.tics.2021.04.003. Epub 2021 Jun 8.
5
Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain-Computer Interfaces Based on Convolutional Neural Networks.
Front Hum Neurosci. 2021 Mar 12;15:646915. doi: 10.3389/fnhum.2021.646915. eCollection 2021.
6
An artificial intelligence that increases simulated brain-computer interface performance.
J Neural Eng. 2021 May 13;18(4). doi: 10.1088/1741-2552/abfaaa.
8
Exploration of User's Mental State Changes during Performing Brain-Computer Interface.
Sensors (Basel). 2020 Jun 3;20(11):3169. doi: 10.3390/s20113169.
9
Brain-computer interfaces for basic neuroscience.
Handb Clin Neurol. 2020;168:233-247. doi: 10.1016/B978-0-444-63934-9.00017-2.

引用本文的文献

1
Left Frontal EEG Power Responds to Stock Price Changes in a Simulated Asset Bubble Market.
Brain Sci. 2021 May 21;11(6):670. doi: 10.3390/brainsci11060670.
2
Prefrontal Asymmetry BCI Neurofeedback Datasets.
Front Neurosci. 2020 Dec 18;14:601402. doi: 10.3389/fnins.2020.601402. eCollection 2020.
3
A Computer Mouse Using Blowing Sensors Intended for People with Disabilities.
Sensors (Basel). 2019 Oct 25;19(21):4638. doi: 10.3390/s19214638.
4
Brain⁻Computer Interfaces for Human Augmentation.
Brain Sci. 2019 Jan 24;9(2):22. doi: 10.3390/brainsci9020022.

本文引用的文献

3
4
Frontal alpha asymmetry neurofeedback for the reduction of negative affect and anxiety.
Behav Res Ther. 2017 May;92:32-40. doi: 10.1016/j.brat.2017.02.002. Epub 2017 Feb 20.
5
BCI Control of Heuristic Search Algorithms.
Front Neuroinform. 2017 Jan 31;11:6. doi: 10.3389/fninf.2017.00006. eCollection 2017.
7
Affective Interaction with a Virtual Character Through an fNIRS Brain-Computer Interface.
Front Comput Neurosci. 2016 Jul 12;10:70. doi: 10.3389/fncom.2016.00070. eCollection 2016.
8
The Do's and Don'ts of Neurofeedback Training: A Review of the Controlled Studies Using Healthy Adults.
Front Hum Neurosci. 2016 Jun 17;10:301. doi: 10.3389/fnhum.2016.00301. eCollection 2016.
9
Mastering the game of Go with deep neural networks and tree search.
Nature. 2016 Jan 28;529(7587):484-9. doi: 10.1038/nature16961.
10
Convergence of EEG and fMRI measures of reward anticipation.
Biol Psychol. 2015 Dec;112:12-9. doi: 10.1016/j.biopsycho.2015.09.007. Epub 2015 Sep 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验