1 Department of Biomedical Engineering, Hanyang University, Seoul, Korea.
Int J Neural Syst. 2018 Dec;28(10):1850023. doi: 10.1142/S0129065718500235. Epub 2018 May 11.
One of the most important issues in current brain-computer interface (BCI) research is the prediction of a user's BCI performance prior to the main BCI session because it would be useful to reduce the time required to determine the BCI paradigm best suited to that user. In electroencephalography (EEG)-BCI research, whether a user has low BCI performance toward a specific BCI paradigm has been estimated using a variety of resting-state EEG features. However, no previous study has attempted to predict the performance of near-infrared spectroscopy (NIRS)-BCI using resting-state NIRS data recorded before the main BCI experiment. In this study, we investigated whether the performance of an NIRS-BCI discriminating a mental arithmetic task from the baseline state could be predicted using resting-state functional connectivity (RSFC) of the prefrontal cortex. The investigation of NIRS signals recorded from 29 participants revealed that the RSFC between bilateral channels in the prefrontal area was negatively correlated with subsequent BCI performance (e.g. a fitted line for the RSFC between L2 and R2 channels explains 41% of BCI performance variation). We expect that our indicator can be used to predict BCI performance of an individual user prior to the main NIRS-BCI experiments, thereby facilitating implementation of more efficient NIRS-BCI systems.
当前脑机接口 (BCI) 研究中的一个重要问题是在主要 BCI 会话之前预测用户的 BCI 性能,因为这有助于减少确定最适合该用户的 BCI 范式所需的时间。在脑电图 (EEG)-BCI 研究中,已经使用各种静息态 EEG 特征来估计用户对特定 BCI 范式的低 BCI 性能。然而,以前没有研究尝试使用主 BCI 实验之前记录的静息态近红外光谱 (NIRS) 数据来预测 NIRS-BCI 的性能。在这项研究中,我们调查了使用前额叶皮层的静息态功能连接 (RSFC) 是否可以预测 NIRS-BCI 区分心算任务与基线状态的性能。对 29 名参与者记录的 NIRS 信号的调查显示,前额区域双侧通道之间的 RSFC 与随后的 BCI 性能呈负相关(例如,用于解释 41%BCI 性能变化的 L2 和 R2 通道之间的 RSFC 拟合线)。我们希望我们的指标可以用于在主要 NIRS-BCI 实验之前预测个体用户的 BCI 性能,从而促进更有效的 NIRS-BCI 系统的实施。