Suppr超能文献

基于卷积神经网络的独立于受试者的基于功能近红外光谱的脑机接口

Subject-Independent Functional Near-Infrared Spectroscopy-Based Brain-Computer Interfaces Based on Convolutional Neural Networks.

作者信息

Kwon Jinuk, Im Chang-Hwan

机构信息

Department of Biomedical Engineering, Hanyang University, Seoul, South Korea.

Department of Electronic Engineering, Hanyang University, Seoul, South Korea.

出版信息

Front Hum Neurosci. 2021 Mar 12;15:646915. doi: 10.3389/fnhum.2021.646915. eCollection 2021.

Abstract

Functional near-infrared spectroscopy (fNIRS) has attracted increasing attention in the field of brain-computer interfaces (BCIs) owing to their advantages such as non-invasiveness, user safety, affordability, and portability. However, fNIRS signals are highly subject-specific and have low test-retest reliability. Therefore, individual calibration sessions need to be employed before each use of fNIRS-based BCI to achieve a sufficiently high performance for practical BCI applications. In this study, we propose a novel deep convolutional neural network (CNN)-based approach for implementing a subject-independent fNIRS-based BCI. A total of 18 participants performed the fNIRS-based BCI experiments, where the main goal of the experiments was to distinguish a mental arithmetic task from an idle state task. Leave-one-subject-out cross-validation was employed to evaluate the average classification accuracy of the proposed subject-independent fNIRS-based BCI. As a result, the average classification accuracy of the proposed method was reported to be 71.20 ± 8.74%, which was higher than the threshold accuracy for effective BCI communication (70%) as well as that obtained using conventional shrinkage linear discriminant analysis (65.74 ± 7.68%). To achieve a classification accuracy comparable to that of the proposed subject-independent fNIRS-based BCI, 24 training trials (of approximately 12 min) were necessary for the traditional subject-dependent fNIRS-based BCI. It is expected that our CNN-based approach would reduce the necessity of long-term individual calibration sessions, thereby enhancing the practicality of fNIRS-based BCIs significantly.

摘要

功能近红外光谱技术(fNIRS)因其具有非侵入性、用户安全性高、价格低廉以及便于携带等优点,在脑机接口(BCI)领域受到了越来越多的关注。然而,fNIRS信号具有高度的个体特异性,且重测信度较低。因此,在每次使用基于fNIRS的BCI之前,都需要进行个体校准,以在实际的BCI应用中实现足够高的性能。在本研究中,我们提出了一种基于深度卷积神经网络(CNN)的新颖方法,用于实现独立于个体的基于fNIRS的BCI。共有18名参与者进行了基于fNIRS的BCI实验,实验的主要目标是区分心算任务和空闲状态任务。采用留一法交叉验证来评估所提出的独立于个体的基于fNIRS的BCI的平均分类准确率。结果表明,所提出方法的平均分类准确率为71.20±8.74%,高于有效BCI通信的阈值准确率(70%)以及使用传统收缩线性判别分析所获得的准确率(65.74±7.68%)。对于传统的依赖个体的基于fNIRS的BCI,要达到与所提出的独立于个体的基于fNIRS的BCI相当的分类准确率,需要24次训练试验(约12分钟)。预计我们基于CNN的方法将减少长期个体校准的必要性,从而显著提高基于fNIRS的BCI的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ba2/7994252/a9e03d0c00cf/fnhum-15-646915-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验