Liu Yang, Liu Yuhong, Luo Jianbin
State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
Nanomaterials (Basel). 2018 Sep 1;8(9):682. doi: 10.3390/nano8090682.
Molecular dynamics simulations on the indentation process of freestanding and Pt(111)-supported black phosphorus (BP) monolayer were conducted to study the fracture mechanism of the membrane. For the freestanding BP monolayer, crack grows firstly along armchair direction and then zigzag direction during the indentation process. Whereas, for the Pt(111)-supported BP monolayer, crack growth shows no obvious directionality, with irregular distribution of crack tips. Further study on stress distribution shows that maximum normal stress component at elastic stage is in zigzag direction for the freestanding BP monolayer, and in vertical direction for the Pt(111)-supported BP monolayer. As BP monolayer is remarkably anisotropic for in-plane mechanical properties and homogeneous for out-of-plane mechanical properties, the difference of stress state may be a key reason for the different fracture behavior in these two cases. These findings may help to understand the failure mechanism of BP, when applied in nano-devices.
进行了关于自由站立和Pt(111)支撑的黑磷(BP)单层压痕过程的分子动力学模拟,以研究膜的断裂机制。对于自由站立的BP单层,在压痕过程中裂纹首先沿扶手椅方向生长,然后沿锯齿方向生长。然而,对于Pt(111)支撑的BP单层,裂纹扩展没有明显的方向性,裂纹尖端分布不规则。对应力分布的进一步研究表明,自由站立的BP单层在弹性阶段的最大法向应力分量沿锯齿方向,而Pt(111)支撑的BP单层则沿垂直方向。由于BP单层在面内力学性能上具有显著的各向异性,而在面外力学性能上是均匀的,应力状态的差异可能是这两种情况下不同断裂行为的关键原因。这些发现可能有助于理解BP应用于纳米器件时的失效机制。