Liu Jinming, Rogatch Angelina, Williams Benjamin R, Freer Chelsea, Zuccoli Chiara, Yang Jing, Kirk Martin L, Nieter Burgmayer Sharon J
Department of Chemistry, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010, United States.
Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States.
J Am Chem Soc. 2025 May 7;147(18):15088-15099. doi: 10.1021/jacs.4c17577. Epub 2025 Apr 27.
The molybdenum (Moco) and tungsten (Tuco) cofactors are uniquely found in pyranopterin dithiolene (PDT) molybdenum and tungsten enzymes, yet the roles of this electronically complex PDT ligand in the catalytic cycles of these enzymes has yet to be revealed. After more than a decade of effort, we have synthesized and characterized a model compound containing a reduced PDT ligand coordinated to a diamagnetic d low-spin Mo(4+) ion, mimicking the MoO(PDT) structure common to most Mo enzyme active sites. A combination of 1D and 2D NMR spectroscopies, augmented by molecular geometry optimization computations, confirms that both and diastereomers coexist in the synthetic final product. Redox processes at both the Mo ion and the pyranopterin are detected by cyclic voltammetry. The two-electron oxidant DCIP oxidizes the pterin component of the ligand in methanol, whereas no reaction occurs in aprotic acetonitrile. Addition of 1 equiv of the one-electron oxidant Fc stoichiometrically oxidizes the Mo(4+) ion to the paramagnetic d Mo(5+) species, a result supported by electron paramagnetic resonance (EPR) spectroscopy. However, the addition of more than 1 equiv of Fc results in oxidation of the reduced pyranopterin to yield a Mo(4+) complex of the oxidized pyranopterin dithiolene ligand, a result supported by both the cyclic voltammetry and electronic absorption titrations. The concrete examples from these model studies suggest how the unique electronic structure of the PDT ligand in Moco and Tuco may enable variable redox reactivity in enzymatic catalysis, highlighting its role as a complex noninnocent biological ligand.
钼(Moco)和钨(Tuco)辅因子仅存在于吡喃蝶呤二硫烯(PDT)钼和钨酶中,然而这种电子结构复杂的PDT配体在这些酶催化循环中的作用尚未揭示。经过十多年的努力,我们合成并表征了一种模型化合物,其中含有与抗磁性低自旋Mo(4+)离子配位的还原型PDT配体,模拟了大多数钼酶活性位点常见的MoO(PDT)结构。一维和二维核磁共振光谱相结合,并通过分子几何优化计算增强,证实了合成最终产物中顺式和非对映异构体共存。通过循环伏安法检测了Mo离子和吡喃蝶呤的氧化还原过程。双电子氧化剂DCIP在甲醇中氧化配体的蝶呤成分,而在非质子乙腈中不发生反应。加入1当量的单电子氧化剂Fc化学计量地将Mo(4+)离子氧化为顺磁性d Mo(5+)物种,电子顺磁共振(EPR)光谱支持了这一结果。然而,加入超过1当量的Fc会导致还原型吡喃蝶呤氧化,生成氧化型吡喃蝶呤二硫烯配体的Mo(4+)配合物,循环伏安法和电子吸收滴定均支持这一结果。这些模型研究中的具体例子表明,Moco和Tuco中PDT配体独特的电子结构如何在酶催化中实现可变的氧化还原反应性,突出了其作为复杂非无辜生物配体的作用。