DFG Cluster of Excellence 'Cells in Motion', (EXC 1003), Münster, Germany.
Institute of Cell Biology, Medical Faculty, University of Münster, Münster, Germany.
Nat Cell Biol. 2018 Oct;20(10):1126-1133. doi: 10.1038/s41556-018-0193-1. Epub 2018 Sep 10.
Coordinated rearrangements of cytoskeletal structures are the principal source of forces that govern cell and tissue morphogenesis. However, unlike for actin-based mechanical forces, our knowledge about the contribution of forces originating from other cytoskeletal components remains scarce. Here, we establish microtubules as central components of cell mechanics during tissue morphogenesis. We find that individual cells are mechanically autonomous during early Drosophila wing epithelium development. Each cell contains a polarized apical non-centrosomal microtubule cytoskeleton that bears compressive forces, whereby acute elimination of microtubule-based forces leads to cell shortening. We further establish that the Fat planar cell polarity (Ft-PCP) signalling pathway couples microtubules at adherens junctions (AJs) and patterns microtubule-based forces across a tissue via polarized transcellular stability, thus revealing a molecular mechanism bridging single cell and tissue mechanics. Together, these results provide a physical basis to explain how global patterning of microtubules controls cell mechanics to coordinate collective cell behaviour during tissue remodelling. These results also offer alternative paradigms towards the interplay of contractile and protrusive cytoskeletal forces at the single cell and tissue levels.
细胞骨架结构的协调重排是控制细胞和组织形态发生的力的主要来源。然而,与基于肌动蛋白的机械力不同,我们对源自其他细胞骨架成分的力的贡献的了解仍然很少。在这里,我们确立了微管在组织形态发生过程中作为细胞力学的核心组成部分。我们发现,在早期果蝇翅膀上皮组织发育过程中,单个细胞在机械上是自主的。每个细胞都含有一个极化的顶端非中心体微管细胞骨架,承受压缩力,急性消除基于微管的力会导致细胞缩短。我们进一步证实,Fat 平面细胞极性 (Ft-PCP) 信号通路将微管偶联到黏着连接 (AJ) 上,并通过极化的跨细胞稳定性在组织中对微管基力进行模式化,从而揭示了连接单细胞和组织力学的分子机制。总之,这些结果为解释微管的全局模式如何控制细胞力学以协调组织重塑过程中的集体细胞行为提供了物理基础。这些结果还为在单细胞和组织水平上收缩性和伸出性细胞骨架力的相互作用提供了替代范例。