Suppr超能文献

3D打印——为骨科未来绘制蓝图:当前概念综述及未来之路!

3D printing- creating a blueprint for the future of orthopedics: Current concept review and the road ahead!

作者信息

Bagaria Vaibhav, Bhansali Rakesh, Pawar Prashant

机构信息

Sir HN Reliance Foundation Hospital, Mumbai, India.

出版信息

J Clin Orthop Trauma. 2018 Jul-Sep;9(3):207-212. doi: 10.1016/j.jcot.2018.07.007. Epub 2018 Jul 23.

Abstract

The use of 3D printing in Orthopedics is set to transform the way surgeries are planned and executed. The development of X rays and later the CT scan and MRI enabled surgeons to understand the anatomy and condition better and helped plan surgeries on images obtained. a term used for 3D printed orthopedic patient models and Jigs has gone a step further by providing surgeons with a physical copy of the patient's affected part that can not only be seen but also felt and moved around spatially. Similarly 3D printed Jigs are patient specific devices that are used to ensure optimal screw trajectory and implant placement with minimal exposure. While the use of 3D printed models and Jigs have now become routine, a similar revolution is happening in the field of designing and printing patient specific implants. Metal printing along with enhanced capability to print other biocompatible materials like PEEK and PLA is likely to improve the current implant manufacturing process. On the horizon is another interesting development related to this field - 3D Bio printing. Printing human tissues and organs is considered the final frontier and impressive strides have been made in printing bone graft substitutes and cartilage like material. This paper is an overview of all the current developments and the road ahead in this invigorating field.

摘要

3D打印在骨科领域的应用必将改变手术规划和实施的方式。X射线的发展以及后来的CT扫描和核磁共振成像使外科医生能够更好地了解解剖结构和病情,并有助于根据获取的图像规划手术。用于3D打印骨科患者模型和夹具的技术更进一步,为外科医生提供了患者患部的实体模型,不仅可以看到,还能触摸并在空间中移动。同样,3D打印夹具是针对患者定制的设备,用于确保最佳的螺钉轨迹和植入物放置,同时减少暴露。虽然3D打印模型和夹具的使用现已成为常规操作,但在设计和打印定制患者植入物领域也正在发生类似的变革。金属打印以及打印其他生物相容性材料(如聚醚醚酮和聚乳酸)的能力增强,可能会改进当前的植入物制造工艺。与该领域相关的另一个有趣进展即将出现——3D生物打印。打印人体组织和器官被视为最终目标,目前在打印骨移植替代物和类似软骨的材料方面已经取得了令人瞩目的进展。本文概述了该活跃领域当前的所有发展情况以及未来的发展方向。

相似文献

1
3D printing- creating a blueprint for the future of orthopedics: Current concept review and the road ahead!
J Clin Orthop Trauma. 2018 Jul-Sep;9(3):207-212. doi: 10.1016/j.jcot.2018.07.007. Epub 2018 Jul 23.
2
3D-printed patient-specific applications in orthopedics.
Orthop Res Rev. 2016 Oct 14;8:57-66. doi: 10.2147/ORR.S99614. eCollection 2016.
3
3D printing metal implants in orthopedic surgery: Methods, applications and future prospects.
J Orthop Translat. 2023 Sep 1;42:94-112. doi: 10.1016/j.jot.2023.08.004. eCollection 2023 Sep.
5
An overview of 3D printed metal implants in orthopedic applications: Present and future perspectives.
Heliyon. 2023 Jun 29;9(7):e17718. doi: 10.1016/j.heliyon.2023.e17718. eCollection 2023 Jul.
7
An Overview of 3D Anatomical Model Printing in Orthopedic Trauma Surgery.
J Multidiscip Healthc. 2023 Apr 4;16:875-887. doi: 10.2147/JMDH.S386406. eCollection 2023.
8
Sterility of 3D-Printed Orthopedic Implants Using Fused Deposition Modeling.
Orthopedics. 2020 Jan 1;43(1):46-51. doi: 10.3928/01477447-20191031-07. Epub 2019 Nov 8.

引用本文的文献

3
Printable devices for neurotechnology.
Front Neurosci. 2024 Feb 19;18:1332827. doi: 10.3389/fnins.2024.1332827. eCollection 2024.
4
A review of Smart future of healthcare in the digital age to improve Quality of orthopaedic patient care in metaverse called: The Healthverse!!
J Clin Orthop Trauma. 2024 Jan 11;48:102340. doi: 10.1016/j.jcot.2024.102340. eCollection 2024 Jan.
5
Corrosion Behavior of Selective Laser Melting (SLM) Manufactured Ti6Al4V Alloy in Saline and BCS Solution.
J Bio Tribocorros. 2022 Jun;8(2). doi: 10.1007/s40735-022-00657-1. Epub 2022 Apr 7.
6
Use of 3D-Printed Patient-Specific Guide for Latarjet Procedure in Patients With Anterior Shoulder Instability: Technical Note.
Arthrosc Tech. 2023 May 15;12(6):e915-e922. doi: 10.1016/j.eats.2023.02.027. eCollection 2023 Jun.
8
An Overview of 3D Anatomical Model Printing in Orthopedic Trauma Surgery.
J Multidiscip Healthc. 2023 Apr 4;16:875-887. doi: 10.2147/JMDH.S386406. eCollection 2023.
9
Impact of three-dimensional printed planning in Paprosky III acetabular defects: a case-control and cost-comparison analysis.
Int Orthop. 2023 Jun;47(6):1465-1472. doi: 10.1007/s00264-023-05763-4. Epub 2023 Mar 17.
10
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease.
Children (Basel). 2023 Feb 7;10(2):319. doi: 10.3390/children10020319.

本文引用的文献

1
Functional Polymers and Nanocomposites for 3D Printing of Smart Structures and Devices.
ACS Appl Mater Interfaces. 2018 May 30;10(21):17489-17507. doi: 10.1021/acsami.8b01786. Epub 2018 May 16.
3
Special Issue: NextGen Materials for 3D Printing.
Materials (Basel). 2018 Apr 4;11(4):555. doi: 10.3390/ma11040555.
4
[Application of the computer-assisted virtual reduction combined with 3D printing technique in acetabular fractures].
Zhongguo Gu Shang. 2017 Jul 25;30(7):627-632. doi: 10.3969/j.issn.1003-0034.2017.07.009.
5
Laparoscopic Acetabular Fracture Fixation after Three-dimensional Modelling and Printing.
Indian J Orthop. 2017 Sep-Oct;51(5):620-623. doi: 10.4103/0019-5413.214215.
7
Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration.
Cartilage. 2017 Oct;8(4):327-340. doi: 10.1177/1947603516665445. Epub 2016 Sep 1.
9
The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.
Acta Biomater. 2017 Oct 1;61:41-53. doi: 10.1016/j.actbio.2017.08.005. Epub 2017 Aug 4.
10
Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.
Int J Mol Sci. 2017 Jul 23;18(7):1597. doi: 10.3390/ijms18071597.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验