Suppr超能文献

三维生物打印及其在关节软骨再生领域的潜力。

Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration.

作者信息

Mouser Vivian H M, Levato Riccardo, Bonassar Lawrence J, D'Lima Darryl D, Grande Daniel A, Klein Travis J, Saris Daniel B F, Zenobi-Wong Marcy, Gawlitta Debby, Malda Jos

机构信息

1 Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.

2 Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.

出版信息

Cartilage. 2017 Oct;8(4):327-340. doi: 10.1177/1947603516665445. Epub 2016 Sep 1.

Abstract

Three-dimensional (3D) bioprinting techniques can be used for the fabrication of personalized, regenerative constructs for tissue repair. The current article provides insight into the potential and opportunities of 3D bioprinting for the fabrication of cartilage regenerative constructs. Although 3D printing is already used in the orthopedic clinic, the shift toward 3D bioprinting has not yet occurred. We believe that this shift will provide an important step forward in the field of cartilage regeneration. Three-dimensional bioprinting techniques allow incorporation of cells and biological cues during the manufacturing process, to generate biologically active implants. The outer shape of the construct can be personalized based on clinical images of the patient's defect. Additionally, by printing with multiple bio-inks, osteochondral or zonally organized constructs can be generated. Relevant mechanical properties can be obtained by hybrid printing with thermoplastic polymers and hydrogels, as well as by the incorporation of electrospun meshes in hydrogels. Finally, bioprinting techniques contribute to the automation of the implant production process, reducing the infection risk. To prompt the shift from nonliving implants toward living 3D bioprinted cartilage constructs in the clinic, some challenges need to be addressed. The bio-inks and required cartilage construct architecture need to be further optimized. The bio-ink and printing process need to meet the sterility requirements for implantation. Finally, standards are essential to ensure a reproducible quality of the 3D printed constructs. Once these challenges are addressed, 3D bioprinted living articular cartilage implants may find their way into daily clinical practice.

摘要

三维(3D)生物打印技术可用于制造个性化的、用于组织修复的再生构建体。本文深入探讨了3D生物打印在制造软骨再生构建体方面的潜力和机遇。尽管3D打印已在骨科临床中使用,但向3D生物打印的转变尚未发生。我们相信,这一转变将是软骨再生领域向前迈出的重要一步。三维生物打印技术允许在制造过程中加入细胞和生物信号,以生成具有生物活性的植入物。构建体的外部形状可以根据患者缺损的临床图像进行个性化定制。此外,通过使用多种生物墨水进行打印,可以生成骨软骨或分层组织的构建体。通过与热塑性聚合物和水凝胶进行混合打印,以及在水凝胶中加入电纺网,可以获得相关的机械性能。最后,生物打印技术有助于实现植入物生产过程的自动化,降低感染风险。为了推动临床上从非生物植入物向活体3D生物打印软骨构建体的转变,需要解决一些挑战。生物墨水和所需的软骨构建体结构需要进一步优化。生物墨水和打印过程需要满足植入的无菌要求。最后,标准对于确保3D打印构建体的可重复质量至关重要。一旦这些挑战得到解决,3D生物打印的活体关节软骨植入物可能会进入日常临床实践。

相似文献

1
Three-Dimensional Bioprinting and Its Potential in the Field of Articular Cartilage Regeneration.
Cartilage. 2017 Oct;8(4):327-340. doi: 10.1177/1947603516665445. Epub 2016 Sep 1.
2
Application of Extrusion-Based Hydrogel Bioprinting for Cartilage Tissue Engineering.
Int J Mol Sci. 2017 Jul 23;18(7):1597. doi: 10.3390/ijms18071597.
4
The bio in the ink: cartilage regeneration with bioprintable hydrogels and articular cartilage-derived progenitor cells.
Acta Biomater. 2017 Oct 1;61:41-53. doi: 10.1016/j.actbio.2017.08.005. Epub 2017 Aug 4.
6
Advances of Hydrogel-Based Bioprinting for Cartilage Tissue Engineering.
Front Bioeng Biotechnol. 2021 Sep 29;9:746564. doi: 10.3389/fbioe.2021.746564. eCollection 2021.
8
Collagen as a bio-ink for 3D printing: a critical review.
J Mater Chem B. 2025 Feb 5;13(6):1890-1919. doi: 10.1039/d4tb01060d.
9
3D Bioprinting Photo-Crosslinkable Hydrogels for Bone and Cartilage Repair.
Int J Bioprint. 2021 Jun 24;7(3):367. doi: 10.18063/ijb.v7i3.367. eCollection 2021.
10
Multi-material 3D bioprinting of porous constructs for cartilage regeneration.
Mater Sci Eng C Mater Biol Appl. 2020 Apr;109:110578. doi: 10.1016/j.msec.2019.110578. Epub 2019 Dec 20.

引用本文的文献

1
Construction of organoids using bioprinting technology: a frontier exploration of cartilage repair.
J Orthop Translat. 2025 Jul 16;54:37-50. doi: 10.1016/j.jot.2025.06.020. eCollection 2025 Sep.
2
Restoring articular cartilage: insights from structure, composition and development.
Nat Rev Rheumatol. 2025 May;21(5):291-308. doi: 10.1038/s41584-025-01236-7. Epub 2025 Mar 28.
3
Redesigning FDM Platforms for Bio-Printing Applications.
Micromachines (Basel). 2025 Feb 16;16(2):226. doi: 10.3390/mi16020226.
5
Orthotopic equine study confirms the pivotal importance of structural reinforcement over the pre-culture of cartilage implants.
Bioeng Transl Med. 2023 Oct 19;9(1):e10614. doi: 10.1002/btm2.10614. eCollection 2024 Jan.
6
Three-Dimensional Scaffolds for Bone Tissue Engineering.
Bioengineering (Basel). 2023 Jun 25;10(7):759. doi: 10.3390/bioengineering10070759.
7
Visualization and bibliometric analysis of 3D printing in cartilage regeneration.
Front Bioeng Biotechnol. 2023 Jun 30;11:1214715. doi: 10.3389/fbioe.2023.1214715. eCollection 2023.
8
3D printing of cell-delivery scaffolds for tissue regeneration.
Regen Biomater. 2023 Mar 27;10:rbad032. doi: 10.1093/rb/rbad032. eCollection 2023.
9
The 3D Bioprinted Scaffolds for Wound Healing.
Pharmaceutics. 2022 Feb 21;14(2):464. doi: 10.3390/pharmaceutics14020464.

本文引用的文献

1
Development and characterisation of a new bioink for additive tissue manufacturing.
J Mater Chem B. 2014 Apr 28;2(16):2282-2289. doi: 10.1039/c3tb21280g. Epub 2014 Mar 17.
3
Computational model-informed design and bioprinting of cell-patterned constructs for bone tissue engineering.
Biofabrication. 2016 May 17;8(2):025009. doi: 10.1088/1758-5090/8/2/025009.
4
A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides.
Biomacromolecules. 2016 Jun 13;17(6):2137-2147. doi: 10.1021/acs.biomac.6b00366. Epub 2016 May 24.
5
7
Biofabrication: reappraising the definition of an evolving field.
Biofabrication. 2016 Jan 8;8(1):013001. doi: 10.1088/1758-5090/8/1/013001.
8
Extracellular vesicles — new tool for joint repair and regeneration.
Nat Rev Rheumatol. 2016 Apr;12(4):243-9. doi: 10.1038/nrrheum.2015.170.
9
Analyzing Biological Performance of 3D-Printed, Cell-Impregnated Hybrid Constructs for Cartilage Tissue Engineering.
Tissue Eng Part C Methods. 2016 Mar;22(3):173-88. doi: 10.1089/ten.TEC.2015.0307. Epub 2016 Jan 18.
10
Additive manufacturing of scaffolds with dexamethasone controlled release for enhanced bone regeneration.
Int J Pharm. 2015 Dec 30;496(2):541-50. doi: 10.1016/j.ijpharm.2015.10.055. Epub 2015 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验