文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease.

作者信息

Sun Zhonghua

机构信息

Discipline of Medical Radiation Science, Curtin Medical School, Curtin University, Perth, WA 6845, Australia.

Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA 6845, Australia.

出版信息

Children (Basel). 2023 Feb 7;10(2):319. doi: 10.3390/children10020319.


DOI:10.3390/children10020319
PMID:36832448
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9955978/
Abstract

Three-dimensional (3D) printing technology has become increasingly used in the medical field, with reports demonstrating its superior advantages in both educational and clinical value when compared with standard image visualizations or current diagnostic approaches. Patient-specific or personalized 3D printed models serve as a valuable tool in cardiovascular disease because of the difficulty associated with comprehending cardiovascular anatomy and pathology on 2D flat screens. Additionally, the added value of using 3D-printed models is especially apparent in congenital heart disease (CHD), due to its wide spectrum of anomalies and its complexity. This review provides an overview of 3D-printed models in pediatric CHD, with a focus on educational value for medical students or graduates, clinical applications such as pre-operative planning and simulation of congenital heart surgical procedures, and communication between physicians and patients/parents of patients and between colleagues in the diagnosis and treatment of CHD. Limitations and perspectives on future research directions for the application of 3D printing technology into pediatric cardiology practice are highlighted.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/5f57a18b59ef/children-10-00319-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/523849c42c99/children-10-00319-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/1fc51b4ed9f2/children-10-00319-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/6dd93c7db201/children-10-00319-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/4a5cca9769f8/children-10-00319-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/1355b9ae0b7e/children-10-00319-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/cf93db96f711/children-10-00319-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/35b844c47a4e/children-10-00319-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/46533ef3f9d0/children-10-00319-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/fe4006ff2225/children-10-00319-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/a26913817b2c/children-10-00319-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/727237066fcf/children-10-00319-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/eb2bf789b78a/children-10-00319-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/ecaeea91b549/children-10-00319-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/53797c0ff181/children-10-00319-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/5f57a18b59ef/children-10-00319-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/523849c42c99/children-10-00319-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/1fc51b4ed9f2/children-10-00319-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/6dd93c7db201/children-10-00319-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/4a5cca9769f8/children-10-00319-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/1355b9ae0b7e/children-10-00319-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/cf93db96f711/children-10-00319-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/35b844c47a4e/children-10-00319-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/46533ef3f9d0/children-10-00319-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/fe4006ff2225/children-10-00319-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/a26913817b2c/children-10-00319-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/727237066fcf/children-10-00319-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/eb2bf789b78a/children-10-00319-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/ecaeea91b549/children-10-00319-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/53797c0ff181/children-10-00319-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c66/9955978/5f57a18b59ef/children-10-00319-g015.jpg

相似文献

[1]
Patient-Specific 3D-Printed Models in Pediatric Congenital Heart Disease.

Children (Basel). 2023-2-7

[2]
Personalized Three-Dimensional Printed Models in Congenital Heart Disease.

J Clin Med. 2019-4-16

[3]
Three-dimensional printing in congenital heart disease: A systematic review.

J Med Radiat Sci. 2018-9

[4]
3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine.

Micromachines (Basel). 2022-9-22

[5]
Clinical Applications of Patient-Specific 3D Printed Models in Cardiovascular Disease: Current Status and Future Directions.

Biomolecules. 2020-11-20

[6]
Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease.

Biomolecules. 2022-10-24

[7]
Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects.

Congenit Heart Dis. 2018-11

[8]
Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments.

PLoS One. 2018-3-21

[9]
Quantitative and qualitative comparison of low- and high-cost 3D-printed heart models.

Quant Imaging Med Surg. 2019-1

[10]
The usefulness of 3D printed heart models for medical student education in congenital heart disease.

BMC Med Educ. 2021-9-8

引用本文的文献

[1]
The impact of 3D printed vs. 3D virtual congenital heart models on patient and family knowledge.

Front Pediatr. 2025-3-14

[2]
Virtual 3D reconstruction of complex congenital cardiac anatomy from 3D rotational angiography.

3D Print Med. 2025-1-27

[3]
Evaluation of the Efficacy and Accuracy of Super-Flexible Three-Dimensional Heart Models of Congenital Heart Disease Made via Stereolithography Printing and Vacuum Casting: A Multicenter Clinical Trial.

J Cardiovasc Dev Dis. 2024-12-3

[4]
Patient-specific 3D modeling and fluid dynamic analysis of primary pulmonary vein stenosis.

Front Cardiovasc Med. 2024-7-4

[5]
Cardiovascular computed tomography in cardiovascular disease: An overview of its applications from diagnosis to prediction.

J Geriatr Cardiol. 2024-5-28

[6]
CT Assessment of Aortopulmonary Septal Defect: How to Approach It?

J Clin Med. 2024-6-15

[7]
Accuracy and feasibility in building a personalized 3D printed femoral pseudoaneurysm model for endovascular training.

PLoS One. 2024

[8]
Integration of case-based learning and three-dimensional printing for tetralogy of fallot instruction in clinical medical undergraduates: a randomized controlled trial.

BMC Med Educ. 2024-5-24

[9]
Three-dimensional printed moulds to obtain silicone hearts with congenital defects for paediatric heart-surgeon training.

Eur J Cardiothorac Surg. 2022-1-1

[10]
Future trends of additive manufacturing in medical applications: An overview.

Heliyon. 2024-2-23

本文引用的文献

[1]
3D modeling and printing for complex biventricular repair of double outlet right ventricle.

Front Cardiovasc Med. 2022-11-30

[2]
Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease.

Biomolecules. 2022-10-24

[3]
3D Printed Models in Cardiovascular Disease: An Exciting Future to Deliver Personalized Medicine.

Micromachines (Basel). 2022-9-22

[4]
Congenital Heart Surgery Skill Training Using Simulation Models: Not an Option but a Necessity.

J Korean Med Sci. 2022-10-3

[5]
Feasibility analyses of virtual models and 3D printing for surgical simulation of the double-outlet right ventricle.

Med Biol Eng Comput. 2022-10

[6]
3D Approaches in Complex CHD: Where Are We? Funny Printing and Beautiful Images, or a Useful Tool?

J Cardiovasc Dev Dis. 2022-8-15

[7]
3D-printed heart models for hands-on training in pediatric cardiology - the future of modern learning and teaching?

GMS J Med Educ. 2022

[8]
Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis.

Heart Lung Circ. 2022-9

[9]
Modeling Human Heart Development and Congenital Defects Using Organoids: How Close Are We?

J Cardiovasc Dev Dis. 2022-4-21

[10]
Three-dimensional printing, holograms, computational modelling, and artificial intelligence for adult congenital heart disease care: an exciting future.

Eur Heart J. 2022-7-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索