Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Braga, Portugal.
Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ.
Mol Biol Evol. 2018 Dec 1;35(12):2873-2885. doi: 10.1093/molbev/msy178.
The establishment of new interactions between transcriptional regulators increases the regulatory diversity that drives phenotypic novelty. To understand how such interactions evolve, we have studied a regulatory module (DDR) composed by three MYB-like proteins: DIVARICATA (DIV), RADIALIS (RAD), and DIV-and-RAD-Interacting Factor (DRIF). The DIV and DRIF proteins form a transcriptional complex that is disrupted in the presence of RAD, a small interfering peptide, due to the formation of RAD-DRIF dimers. This dynamic interaction result in a molecular switch mechanism responsible for the control of distinct developmental processes in plants. Here, we have determined how the DDR regulatory module was established by analyzing the origin and evolution of the DIV, DRIF, and RAD protein families and the evolutionary history of their interactions. We show that duplications of a pre-existing MYB domain originated the DIV and DRIF protein families in the ancestral lineage of green algae, and, later, the RAD family in seed plants. Intraspecies interactions between the MYB domains of DIV and DRIF proteins are detected in green algae, whereas the earliest evidence of an interaction between DRIF and RAD proteins occurs in the gymnosperms, coincident with the establishment of the RAD family. Therefore, the DDR module evolved in a stepwise progression with the DIV-DRIF transcription complex evolving prior to the antagonistic RAD-DRIF interaction that established the molecular switch mechanism. Our results suggest that the successive rearrangement and divergence of a single protein domain can be an effective evolutionary mechanism driving new protein interactions and the establishment of novel regulatory modules.
转录调控因子之间新的相互作用的建立增加了驱动表型新颖性的调控多样性。为了了解这种相互作用是如何进化的,我们研究了一个由三个 MYB 样蛋白组成的调控模块(DDR):DIVARICATA(DIV)、RADIALIS(RAD)和 DIV 和 RAD 相互作用因子(DRIF)。DIV 和 DRIF 蛋白形成一个转录复合物,在 RAD 的存在下会被破坏,RAD 是一种小干扰肽,因为 RAD-DRIF 二聚体的形成。这种动态相互作用导致了一种分子开关机制,负责控制植物中不同的发育过程。在这里,我们通过分析 DIV、DRIF 和 RAD 蛋白家族的起源和进化以及它们相互作用的进化历史,确定了 DDR 调控模块是如何建立的。我们表明,一个预先存在的 MYB 结构域的复制产生了绿藻祖先谱系中的 DIV 和 DRIF 蛋白家族,后来又产生了种子植物中的 RAD 家族。在绿藻中检测到 DIV 和 DRIF 蛋白的 MYB 结构域之间的种内相互作用,而 DRIF 和 RAD 蛋白之间的最早相互作用证据发生在裸子植物中,与 RAD 家族的建立同时发生。因此,DDR 模块是逐步进化的,DIV-DRIF 转录复合物先于建立分子开关机制的拮抗 RAD-DRIF 相互作用进化。我们的研究结果表明,单个蛋白结构域的连续重排和分化可以是一种有效的进化机制,驱动新的蛋白相互作用和新的调控模块的建立。