Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA.
Center for Applied Plant Sciences (CAPS),The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
Biochim Biophys Acta Gene Regul Mech. 2017 Jan;1860(1):31-40. doi: 10.1016/j.bbagrm.2016.07.005. Epub 2016 Jul 15.
Combinatorial gene regulation provides a mechanism by which relatively small numbers of transcription factors can control the expression of a much larger number of genes with finely tuned temporal and spatial patterns. This is achieved by transcription factors assembling into complexes in a combinatorial fashion, exponentially increasing the number of genes that they can target. Such an arrangement also increases the specificity and affinity for the cis-regulatory sequences required for accurate target gene expression. Superimposed on this transcription factor combinatorial arrangement is the increasing realization that histone modification marks expand the regulatory information, which is interpreted by histone readers and writers that are part of the regulatory apparatus. Here, we review the progress in these areas from the perspective of plant combinatorial gene regulation, providing examples of different regulatory solutions and comparing them to other metazoans. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
组合基因调控提供了一种机制,通过这种机制,相对较少数量的转录因子可以以精细调节的时空模式控制大量基因的表达。这是通过转录因子以组合的方式组装成复合物来实现的,从而使它们可以靶向的基因数量呈指数级增加。这种排列方式还提高了对精确靶基因表达所需的顺式调控序列的特异性和亲和力。叠加在这种转录因子组合排列之上的是,人们越来越认识到组蛋白修饰标记扩展了调控信息,而组蛋白的读取器和写入器则对这些信息进行解读,它们是调控装置的一部分。在这里,我们从植物组合基因调控的角度回顾了这些领域的进展,提供了不同调控解决方案的例子,并将其与其他后生动物进行了比较。本文是由 Erich Grotewold 博士和 Nathan Springer 博士编辑的特刊“植物基因调控机制和网络”的一部分。