Department of Respiratory, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy, Xueyuan AVE 1098, Xili University Town, Shenzhen, 518055, Guangdong, People's Republic of China.
The State Key Laboratory of Cancer Biology, Department of Immunology, Air Force Military Medical University (Fourth Military Medical University), 169 Changle West Road, Xi'an, 710032, People's Republic of China.
Invest New Drugs. 2019 Apr;37(2):384-400. doi: 10.1007/s10637-018-0664-z. Epub 2018 Sep 10.
Interstitial lung disease (ILD) is a rare but lethal adverse effect of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) treatment. The specific mechanism of this disease is not fully understood. To systematically analyze genes associated with EGFR-TKI induced ILD, gene data of EGFR-TKI induced ILD were extracted initially using text mining, and then the intersection between genes from text mining and Gene Expression Omnibus (GEO) dataset was taken for further protein-protein interaction (PPI) analysis using String-bd database. Go ontology (GO) and pathway enrichment analysis was also conducted based on Database of Annotation, Visualization and Integrated Discovery (DAVID) platform. The PPI network generated by STRING was visualized by Cytoscape, and the topology scores, functional regions and gene annotations were analyzed using plugins of CytoNCA, molecular complex detection (MCODE) and ClueGo. 37 genes were identified as EGFR-TKI induced ILD related. Gene enrichment analysis yield 18 enriched GO terms and 12 associated pathways. A PPI network that included 199 interactions for a total of 35 genes was constructed. Ten genes were selected as hub genes using CytoNCA plugin, and four highly connected clusters were identified using MCODE plugin. GO and pathway annotation analysis for the cluster one revealed that five genes were associated with either response to dexamethasone or with lung fibrosis, including CTGF, CCL2, IGF1, EGFR and ICAM1. Our data might be useful to reveal the pathological mechanisms of EGFR-TKI induced ILD and provide evidence for the diagnosis and treatment in the future.
间质性肺病(ILD)是表皮生长因子受体(EGFR)酪氨酸激酶抑制剂(TKI)治疗的一种罕见但致命的不良反应。这种疾病的具体机制尚不完全清楚。为了系统地分析与 EGFR-TKI 诱导的 ILD 相关的基因,我们首先使用文本挖掘技术提取 EGFR-TKI 诱导的 ILD 的基因数据,然后取文本挖掘和基因表达综合数据库(GEO)数据集之间的基因交集,使用 STRING-bd 数据库进行进一步的蛋白质-蛋白质相互作用(PPI)分析。还基于数据库的注释、可视化和综合发现(DAVID)平台进行了 GO 本体(GO)和通路富集分析。STRING 生成的 PPI 网络通过 Cytoscape 可视化,并使用 CytoNCA、分子复合物检测(MCODE)和 ClueGo 的插件分析拓扑评分、功能区域和基因注释。确定了 37 个基因是 EGFR-TKI 诱导的 ILD 相关的。基因富集分析产生了 18 个丰富的 GO 术语和 12 个相关通路。构建了一个包含 199 个相互作用的 PPI 网络,共涉及 35 个基因。使用 CytoNCA 插件选择了 10 个基因作为枢纽基因,使用 MCODE 插件确定了 4 个高度连接的簇。对簇一的 GO 和通路注释分析表明,五个基因与地塞米松反应或肺纤维化有关,包括 CTGF、CCL2、IGF1、EGFR 和 ICAM1。我们的数据可能有助于揭示 EGFR-TKI 诱导的 ILD 的病理机制,并为未来的诊断和治疗提供证据。