Suppr超能文献

剂量反应分析不同方法的比较。

Comparison of different approaches for dose response analysis.

作者信息

Saha Saswati, Brannath Werner

机构信息

Competence Center for Clinical Trials and Institute of Statistics, Faculty 03, University Bremen, 28359, Bremen, Germany.

出版信息

Biom J. 2019 Jan;61(1):83-100. doi: 10.1002/bimj.201700276. Epub 2018 Sep 10.

Abstract

Characterizing an appropriate dose-response relationship and identifying the right dose in a clinical trial are two main goals of early drug-development. MCP-Mod is one of the pioneer approaches developed within the last 10 years that combines the modeling techniques with multiple comparison procedures to address the above goals in clinical drug development. The MCP-Mod approach begins with a set of potential dose-response models, tests for a significant dose-response effect (proof of concept, PoC) using multiple linear contrasts tests and selects the "best" model among those with a significant contrast test. A disadvantage of the method is that the parameter values of the candidate models need to be fixed a priori for the contrasts tests. This may lead to a loss in power and unreliable model selection. For this reason, several variations of the MCP-Mod approach and a hierarchical model selection approach have been suggested where the parameter values need not be fixed in the proof of concept testing step and can be estimated after the model selection step. This paper provides a numerical comparison of the different MCP-Mod variants and the hierarchical model selection approach with regard to their ability of detecting the dose-response trend, their potential to select the correct model and their accuracy in estimating the dose response shape and minimum effective dose. Additionally, as one of the approaches is based on two-sided model comparisons only, we make it more consistent with the common goals of a PoC study, by extending it to one-sided comparisons between the constant and alternative candidate models in the proof of concept step.

摘要

确定合适的剂量反应关系并在临床试验中确定正确的剂量是早期药物开发的两个主要目标。MCP-Mod是过去10年中开发的先驱方法之一,它将建模技术与多重比较程序相结合,以实现临床药物开发中的上述目标。MCP-Mod方法从一组潜在的剂量反应模型开始,使用多重线性对比检验来检验显著的剂量反应效应(概念验证,PoC),并在具有显著对比检验的模型中选择“最佳”模型。该方法的一个缺点是,对于对比检验,候选模型的参数值需要事先固定。这可能会导致检验效能的损失和不可靠的模型选择。因此,有人提出了MCP-Mod方法的几种变体以及一种层次模型选择方法,在概念验证测试步骤中不需要固定参数值,并且可以在模型选择步骤之后进行估计。本文对不同的MCP-Mod变体和层次模型选择方法在检测剂量反应趋势的能力、选择正确模型的潜力以及估计剂量反应形状和最小有效剂量的准确性方面进行了数值比较。此外,由于其中一种方法仅基于双侧模型比较,我们通过在概念验证步骤中将其扩展为常数模型与替代候选模型之间的单侧比较,使其更符合PoC研究的共同目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验