Swiss Federal Institute of Technology/ETH Zürich, Switzerland.
Brain Res. 2020 Mar 15;1731:145943. doi: 10.1016/j.brainres.2018.09.011. Epub 2018 Sep 8.
Survival-maximizing, well-timed actions are a key responsibility of the brain. Hypothalamic neurons containing neurotransmitters orexins/hypocretins are important players in this process. Individuals without orexin neurons display inappropriately-timed transitions between arousal states, and other behavioural abnormalities including increased risk-taking. Deciphering neural circuits through which orexin neurons control brain states and behavior thus illuminates brain mechanisms of context-appropriate actions. This review outlines and puts into broader context recent examples of orexin circuit analyses in the lateral hypothalamus (LH) and the nucleus accumbens (NAc), two brain regions clasically implicated in context-appropriate actions. In the LH, orexin neurons excite GAD65-expressing neurons. The LH(GAD65) neuron excitation induces elevated locomotor activity, while inhibition of LH(GAD65) neuron natural activity depresses voluntary locomotion. The orexin → LH(GAD65) circuit may therefore assist in creating the drive to run. In the NAc shell region, orexin axons excite D2 neurons (dopamine-inhibited neurons expressing dopamine type-2 receptor). NAc(D2) cell activation increases risk-avoidance behaviors, while NAc(D2) cell inhibition reduces risk-avoidance. The excitatory orexin → NAc(D2) circuit may thus assist in reducing risk-taking, and oppose the inhibitory VTA(dopamine) → NAc(D2) circuit during computation of risk appetite. Neural computation in these local and long-range orexin circuits may thus assist in generating risk-avoiding locomotor responses to stressors known to activate orexin neurons, such as body energy depletion or potential external threats. A model is proposed where orexin-opposing, inhibitory inputs acting on the orexin target neurons may context-specifically channel orexin-induced brain excitation towards particular sets of actions.
最大限度地延长生存时间并采取及时行动是大脑的关键职责。含有神经递质食欲素/下丘脑泌素的下丘脑神经元是这一过程中的重要参与者。没有食欲素神经元的个体表现出觉醒状态之间不适当的过渡,以及其他行为异常,包括增加冒险行为的风险。因此,通过解析食欲素神经元控制大脑状态和行为的神经回路,揭示了上下文适当行为的大脑机制。本综述概述并将最近的食欲素回路分析的例子置于更广泛的背景下,这些例子来自外侧下丘脑 (LH) 和伏隔核 (NAc) 中的食欲素神经元,这两个大脑区域经典地参与了上下文适当的行动。在 LH 中,食欲素神经元兴奋 GAD65 表达神经元。LH(GAD65)神经元的兴奋诱导了更高的运动活性,而 LH(GAD65)神经元自然活性的抑制则抑制了自愿运动。因此,食欲素→LH(GAD65)回路可能有助于产生奔跑的动力。在 NAc 壳区,食欲素轴突兴奋 D2 神经元(表达多巴胺 2 型受体的多巴胺抑制性神经元)。NAc(D2)细胞的激活增加了风险回避行为,而 NAc(D2)细胞的抑制则减少了风险回避行为。兴奋性的食欲素→NAc(D2)回路可能有助于减少冒险行为,并在计算风险偏好时与抑制性 VTA(多巴胺)→NAc(D2)回路相反。这些局部和远程食欲素回路中的神经计算可能有助于产生对已知激活食欲素神经元的应激源的回避运动反应,例如身体能量消耗或潜在的外部威胁。提出了一个模型,其中食欲素拮抗、抑制性输入作用于食欲素靶神经元,可能会根据具体情况将食欲素诱导的大脑兴奋引导到特定的行为集合。