Suppr超能文献

在平行级联选择分子动力学中,初始结构的选择规则会影响构象采样效率。

Selection rules on initial structures in parallel cascade selection molecular dynamics affect conformational sampling efficiency.

机构信息

Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan.

出版信息

J Mol Graph Model. 2018 Oct;85:153-159. doi: 10.1016/j.jmgm.2018.08.014. Epub 2018 Sep 5.

Abstract

Parallel cascade selection molecular dynamics (PaCS-MD) is a conformational sampling method for generating transition pathways from a given reactant to a product. In PaCS-MD, initial structures relevant to conformational transitions of proteins are selected and resampled by short-time MD simulations. As a general reaction coordinate, a root-mean-square deviation measured from the product (RMSD) is employed to rank the resampled configurations. Quantitatively, n initial structures are randomly selected from among the top X % of highly ranked configurations and resampled again. In PaCS-MD, the selection of initial structures and their conformational resampling are repeated as a cycle to promote the essential conformational transitions. Therefore, rules for selecting the initial structures might affect the conformational sampling efficiency. In the present study, to address the conformational sampling efficiency depending on the selection rule, the open-closed transition of di-ubiquitin was reproduced by PaCS-MD based on the resampling from the top X = 0.1, 1.0, 2.0, 5.0, 10.0, 25.0, 30.0, 40.0, and 50.0% of highly ranked configurations. Judging from broadness of sampled conformational area and required cycles, we conclude that the resampling from the top ∼2.0% of highly ranked configurations might be the most efficient for generating a set of transition pathways in PaCS-MD.

摘要

平行级联选择分子动力学(PaCS-MD)是一种从给定反应物生成产物的构象采样方法。在 PaCS-MD 中,通过短时间 MD 模拟选择和重新采样与蛋白质构象转变相关的初始结构。作为一般的反应坐标,使用从产物测量的均方根偏差(RMSD)来对重新采样的构型进行排序。从定量的角度来看,从排名前 X%的高度排名配置中随机选择 n 个初始结构,并再次重新采样。在 PaCS-MD 中,通过循环重复选择初始结构及其构象重采样,以促进基本的构象转变。因此,选择初始结构的规则可能会影响构象采样效率。在本研究中,为了解决取决于选择规则的构象采样效率问题,通过基于从排名前 X=0.1、1.0、2.0、5.0、10.0、25.0、30.0、40.0 和 50.0%的高度排名配置中重新采样,重现了二泛素的开-闭构象转变。从采样构象区域的宽度和所需的循环来看,我们得出结论,从排名前约 2.0%的高度排名配置中重新采样可能是 PaCS-MD 中生成一组过渡途径的最有效方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验