Suppr超能文献

利用强化学习增强生物分子采样:一种树搜索分子动力学模拟方法。

Enhancing Biomolecular Sampling with Reinforcement Learning: A Tree Search Molecular Dynamics Simulation Method.

作者信息

Shin Kento, Tran Duy Phuoc, Takemura Kazuhiro, Kitao Akio, Terayama Kei, Tsuda Koji

机构信息

Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa, Chiba 277-8561, Japan.

School of Life Sciences and Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

出版信息

ACS Omega. 2019 Aug 19;4(9):13853-13862. doi: 10.1021/acsomega.9b01480. eCollection 2019 Aug 27.

Abstract

This paper proposes a novel molecular simulation method, called tree search molecular dynamics (TS-MD), to accelerate the sampling of conformational transition pathways, which require considerable computation. In TS-MD, a tree search algorithm, called upper confidence bounds for trees, which is a type of reinforcement learning algorithm, is applied to sample the transition pathway. By learning from the results of the previous simulations, TS-MD efficiently searches conformational space and avoids being trapped in local stable structures. TS-MD exhibits better performance than parallel cascade selection molecular dynamics, which is one of the state-of-the-art methods, for the folding of miniproteins, Chignolin and Trp-cage, in explicit water.

摘要

本文提出了一种名为树搜索分子动力学(TS-MD)的新型分子模拟方法,以加速对需要大量计算的构象转变途径的采样。在TS-MD中,一种名为树的上限置信区间的树搜索算法(它是强化学习算法的一种)被应用于对转变途径进行采样。通过从前序模拟结果中学习,TS-MD能有效地搜索构象空间,并避免被困在局部稳定结构中。对于微型蛋白质Chignolin和色氨酸笼在显式水中的折叠,TS-MD比最先进的方法之一——并行级联选择分子动力学表现出更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c7b/6714528/cd01704985b3/ao9b01480_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验