Rehman Amjad, Abbas Naveed, Saba Tanzila, Mehmood Zahid, Mahmood Toqeer, Ahmed Khawaja Tehseen
College of Computer and Information Systems, Al Yamamah University, Riyadh, Saudi Arabia.
Department of Computer Science, Islamia College University, Peshawar KPK, Peshawar, Pakistan.
Microsc Res Tech. 2018 Sep;81(9):1042-1058. doi: 10.1002/jemt.23071. Epub 2018 Sep 12.
Malaria parasitemia diagnosis and grading is hard and still far from perfection. Inaccurate diagnosis and grading has caused tremendous deaths rate particularly in young children worldwide. The current research deeply reviews automated malaria parasitemia diagnosis and grading in thin blood smear digital images through image analysis and computer vision based techniques. Actually, state-of-the-art reveals that current proposed practices present partially or morphology dependent solutions to the problem of computer vision based microscopy diagnosis of malaria parasitemia. Accordingly, a deep appraisal of the current practices is investigated, compared and analyzed on benchmark datasets. The open gaps are highlighted and the future directions are laid down for a complete automated microscopy diagnosis for malaria parasitemia based on those factors that have not been affected by other diseases. Moreover, a general computer vision framework to perform malaria parasitemia estimation/grading is constructed in universal directions. Finally, remaining problems are highlighted and possible directions are suggested. RESEARCH HIGHLIGHTS: The current research presents a microscopic malaria parasitemia diagnosis and grading of malaria in thin blood smear digital images through image analysis and computer vision based techniques. The open gaps are highlighted and future directions for a complete automated microscopy diagnosis of malaria parasitemia mentioned.
疟疾寄生虫血症的诊断和分级难度较大,且仍远未达到完美。不准确的诊断和分级导致了极高的死亡率,尤其是在全球范围内的幼儿中。当前的研究通过图像分析和基于计算机视觉的技术,对薄血涂片数字图像中的疟疾寄生虫血症自动诊断和分级进行了深入综述。实际上,最新技术表明,目前提出的方法针对基于计算机视觉的疟疾寄生虫血症显微镜诊断问题,提供的是部分或依赖形态学的解决方案。因此,在基准数据集上对当前的做法进行了深入评估、比较和分析。突出了存在的差距,并基于未受其他疾病影响的因素,为疟疾寄生虫血症的完整自动显微镜诊断确定了未来方向。此外,还构建了一个通用的计算机视觉框架,以进行疟疾寄生虫血症的估计/分级。最后,强调了遗留问题并提出了可能的方向。研究亮点:当前的研究通过图像分析和基于计算机视觉的技术,对薄血涂片数字图像中的疟疾进行了显微镜下疟疾寄生虫血症诊断和分级。突出了存在的差距,并提及了疟疾寄生虫血症完整自动显微镜诊断的未来方向。