Tek F Boray, Dempster Andrew G, Kale Izzet
Applied DSP & VLSI Research Group, University of Westminster, London, UK.
Malar J. 2009 Jul 13;8:153. doi: 10.1186/1475-2875-8-153.
This paper reviews computer vision and image analysis studies aiming at automated diagnosis or screening of malaria infection in microscope images of thin blood film smears. Existing works interpret the diagnosis problem differently or propose partial solutions to the problem. A critique of these works is furnished. In addition, a general pattern recognition framework to perform diagnosis, which includes image acquisition, pre-processing, segmentation, and pattern classification components, is described. The open problems are addressed and a perspective of the future work for realization of automated microscopy diagnosis of malaria is provided.
本文综述了旨在对薄血膜涂片显微镜图像中的疟疾感染进行自动诊断或筛查的计算机视觉与图像分析研究。现有工作对诊断问题的解读各不相同,或者针对该问题提出了部分解决方案。本文对这些工作进行了批判。此外,还描述了一个用于执行诊断的通用模式识别框架,该框架包括图像采集、预处理、分割和模式分类组件。文中讨论了存在的开放性问题,并对实现疟疾自动显微镜诊断的未来工作前景进行了展望。