Suppr超能文献

预测黑质网状部神经元对抑制性突触输入的反应

Predicting responses to inhibitory synaptic input in substantia nigra pars reticulata neurons.

作者信息

Simmons D V, Higgs M H, Lebby S, Wilson C J

机构信息

Department of Biology, University of Texas at San Antonio , San Antonio, Texas.

出版信息

J Neurophysiol. 2018 Nov 1;120(5):2679-2693. doi: 10.1152/jn.00535.2018. Epub 2018 Sep 12.

Abstract

The changes in firing probability produced by a synaptic input are usually visualized using the poststimulus time histogram (PSTH). It would be useful if postsynaptic firing patterns could be predicted from patterns of afferent synaptic activation, but attempts to predict the PSTH from synaptic potential waveforms using reasoning based on voltage trajectory and spike threshold have not been successful, especially for inhibitory inputs. We measured PSTHs for substantia nigra pars reticulata (SNr) neurons inhibited by optogenetic stimulation of striato-nigral inputs or by matching artificial inhibitory conductances applied by dynamic clamp. The PSTH was predicted by a model based on each SNr cell's phase-resetting curve (PRC). Optogenetic activation of striato-nigral input or artificial synaptic inhibition produced a PSTH consisting of an initial depression of firing followed by oscillatory increases and decreases repeating at the SNr cell's baseline firing rate. The phase resetting model produced PSTHs closely resembling the cell data, including the primary pause in firing and the oscillation. Key features of the PSTH, including the onset rate and duration of the initial inhibitory phase, and the subsequent increase in firing probability could be explained from the characteristic shape of the SNr cell's PRC. The rate of damping of the late oscillation was explained by the influence of asynchronous phase perturbations producing firing rate jitter and wander. Our results demonstrate the utility of phase-resetting models as a general method for predicting firing in spontaneously active neurons and their value in interpretation of the striato-nigral PSTH. NEW & NOTEWORTHY The coupling of patterned presynaptic input to sequences of postsynaptic firing is a Gordian knot, complicated by the multidimensionality of neuronal state and the diversity of potential initial states. Even so, it is fundamental for even the simplest understanding of network dynamics. We show that a simple phase-resetting model constructed from experimental measurements can explain and predict the sequence of spike rate changes following synaptic inhibition of an oscillating basal ganglia output neuron.

摘要

通常使用刺激后时间直方图(PSTH)来可视化由突触输入产生的放电概率变化。如果能够根据传入突触激活模式预测突触后放电模式,那将非常有用,但试图基于电压轨迹和动作电位阈值推理,从突触电位波形预测PSTH的尝试并未成功,尤其是对于抑制性输入。我们测量了黑质网状部(SNr)神经元的PSTH,这些神经元通过光遗传学刺激纹状体 - 黑质输入或通过动态钳施加匹配的人工抑制性电导来抑制。PSTH由基于每个SNr细胞的相位重置曲线(PRC)的模型预测。纹状体 - 黑质输入的光遗传学激活或人工突触抑制产生了一个PSTH,其包括放电的初始抑制,随后是振荡性的增加和减少,以SNr细胞的基线放电率重复出现。相位重置模型产生的PSTH与细胞数据非常相似,包括放电的主要暂停和振荡。PSTH的关键特征,包括初始抑制阶段的起始速率和持续时间,以及随后放电概率的增加,可以从SNr细胞PRC的特征形状来解释。后期振荡的衰减速率由产生放电率抖动和漂移的异步相位扰动的影响来解释。我们的结果证明了相位重置模型作为预测自发活动神经元放电的通用方法的实用性及其在解释纹状体 - 黑质PSTH方面的价值。新内容与值得注意之处:模式化的突触前输入与突触后放电序列的耦合是一个棘手的问题,因神经元状态的多维性和潜在初始状态的多样性而变得复杂。即便如此,它对于哪怕是对网络动力学最简单的理解也是至关重要的。我们表明,从实验测量构建的简单相位重置模型可以解释和预测振荡的基底神经节输出神经元突触抑制后动作电位频率变化的序列。

相似文献

1
Predicting responses to inhibitory synaptic input in substantia nigra pars reticulata neurons.
J Neurophysiol. 2018 Nov 1;120(5):2679-2693. doi: 10.1152/jn.00535.2018. Epub 2018 Sep 12.
2
Indirect pathway control of firing rate and pattern in the substantia nigra pars reticulata.
J Neurophysiol. 2020 Feb 1;123(2):800-814. doi: 10.1152/jn.00678.2019. Epub 2020 Jan 15.
3
Propagation of Oscillations in the Indirect Pathway of the Basal Ganglia.
J Neurosci. 2023 Aug 30;43(35):6112-6125. doi: 10.1523/JNEUROSCI.0445-23.2023. Epub 2023 Jul 3.
4
Unitary synaptic connections among substantia nigra pars reticulata neurons.
J Neurophysiol. 2016 Jun 1;115(6):2814-29. doi: 10.1152/jn.00094.2016. Epub 2016 Mar 9.
5
Inhibitory synaptic transmission from the substantia nigra pars reticulata to the ventral medial thalamus in mice.
Neurosci Res. 2015 Aug;97:26-35. doi: 10.1016/j.neures.2015.03.007. Epub 2015 Apr 14.
7
GABAergic control of substantia nigra dopaminergic neurons.
Prog Brain Res. 2007;160:189-208. doi: 10.1016/S0079-6123(06)60011-3.
8
Predicting the response of striatal spiny neurons to sinusoidal input.
J Neurophysiol. 2017 Aug 1;118(2):855-873. doi: 10.1152/jn.00143.2017. Epub 2017 May 10.
9
Active decorrelation in the basal ganglia.
Neuroscience. 2013 Oct 10;250:467-82. doi: 10.1016/j.neuroscience.2013.07.032. Epub 2013 Jul 24.

引用本文的文献

1
Neuronal and network resonance in the external globus pallidus.
J Neurophysiol. 2025 Jul 28. doi: 10.1152/jn.00270.2025.
2
Impact of Unitary Synaptic Inhibition on Spike Timing in Ventral Tegmental Area Dopamine Neurons.
eNeuro. 2024 Jul 29;11(7). doi: 10.1523/ENEURO.0203-24.2024. Print 2024 Jul.
3
Dopamine depletion weakens direct pathway modulation of SNr neurons.
Neurobiol Dis. 2024 Jun 15;196:106512. doi: 10.1016/j.nbd.2024.106512. Epub 2024 Apr 24.
4
Propagation of Oscillations in the Indirect Pathway of the Basal Ganglia.
J Neurosci. 2023 Aug 30;43(35):6112-6125. doi: 10.1523/JNEUROSCI.0445-23.2023. Epub 2023 Jul 3.
5
SK and Kv4 Channels Limit Spike Timing Perturbations in Pacemaking Dopamine Neurons.
eNeuro. 2023 Apr 10;10(4). doi: 10.1523/ENEURO.0445-22.2023. Print 2023 Apr.
6
Spontaneous Activity of the Local GABAergic Synaptic Network Causes Irregular Neuronal Firing in the External Globus Pallidus.
J Neurosci. 2023 Feb 22;43(8):1281-1297. doi: 10.1523/JNEUROSCI.1969-22.2023. Epub 2023 Jan 9.
9
Periodic unitary synaptic currents in the mouse globus pallidus during spontaneous firing in slices.
J Neurophysiol. 2021 Apr 1;125(4):1482-1500. doi: 10.1152/jn.00071.2021. Epub 2021 Mar 17.

本文引用的文献

1
Measurement of phase resetting curves using optogenetic barrage stimuli.
J Neurosci Methods. 2017 Sep 1;289:23-30. doi: 10.1016/j.jneumeth.2017.06.018. Epub 2017 Jun 28.
2
Effect of Phase Response Curve Shape and Synaptic Driving Force on Synchronization of Coupled Neuronal Oscillators.
Neural Comput. 2017 Jul;29(7):1769-1814. doi: 10.1162/NECO_a_00978. Epub 2017 May 31.
3
Predicting the response of striatal spiny neurons to sinusoidal input.
J Neurophysiol. 2017 Aug 1;118(2):855-873. doi: 10.1152/jn.00143.2017. Epub 2017 May 10.
4
Neurons as oscillators.
J Neurophysiol. 2016 Dec 1;116(6):2950-2960. doi: 10.1152/jn.00525.2015. Epub 2016 Sep 28.
5
Unitary synaptic connections among substantia nigra pars reticulata neurons.
J Neurophysiol. 2016 Jun 1;115(6):2814-29. doi: 10.1152/jn.00094.2016. Epub 2016 Mar 9.
6
Context-dependent coding in single neurons.
J Comput Neurosci. 2014 Dec;37(3):459-80. doi: 10.1007/s10827-014-0513-9. Epub 2014 Jul 3.
8
Predicting the responses of repetitively firing neurons to current noise.
PLoS Comput Biol. 2014 May 8;10(5):e1003612. doi: 10.1371/journal.pcbi.1003612. eCollection 2014 May.
9
Control of basal ganglia output by direct and indirect pathway projection neurons.
J Neurosci. 2013 Nov 20;33(47):18531-9. doi: 10.1523/JNEUROSCI.1278-13.2013.
10
Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population.
J Neurophysiol. 2013 Jan;109(2):497-506. doi: 10.1152/jn.00677.2012. Epub 2012 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验