Suppr超能文献

基底神经节中的主动去相关。

Active decorrelation in the basal ganglia.

机构信息

Department of Biology, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States.

出版信息

Neuroscience. 2013 Oct 10;250:467-82. doi: 10.1016/j.neuroscience.2013.07.032. Epub 2013 Jul 24.

Abstract

The cytoarchitecturally-homogeneous appearance of the globus pallidus, subthalamic nucleus and substantia nigra has long been said to imply a high degree of afferent convergence and sharing of inputs by nearby neurons. Moreover, axon collaterals of neurons in the external segment of the globus pallidus and the substantia nigra pars reticulata arborize locally and make inhibitory synapses on other cells of the same type. These features suggest that the connectivity of the basal ganglia may impose spike-time correlations among the cells, and it has been puzzling that experimental studies have failed to demonstrate such correlations. One possible solution arises from studies of firing patterns in basal ganglia cells, which reveal that they are nearly all pacemaker cells. Their high rate of firing does not depend on synaptic excitation, but they fire irregularly because a dense barrage of synaptic inputs normally perturbs the timing of their autonomous activity. Theoretical and computational studies show that the responses of repetitively-firing neurons to shared input or mutual synaptic coupling often defy classical intuitions about temporal synaptic integration. The patterns of spike-timing among such neurons depend on the ionic mechanism of pacemaking, the level of background uncorrelated cellular and synaptic noise, and the firing rates of the neurons, as well as the properties of their synaptic connections. Application of these concepts to the basal ganglia circuitry suggests that the connectivity and physiology of these nuclei may be configured to prevent the establishment of permanent spike-timing relationships between neurons. The development of highly synchronous oscillatory patterns of activity in Parkinson's disease may result from the loss of pacemaking by some basal ganglia neurons, and accompanying breakdown of the mechanisms responsible for active decorrelation.

摘要

苍白球、丘脑底核和黑质的细胞构筑学同质外观长期以来一直被认为意味着传入神经元的高度会聚和共享。此外,苍白球外节和黑质网状部神经元的轴突分支在局部树突上形成,并与相同类型的其他细胞形成抑制性突触。这些特征表明基底神经节的连接可能会在细胞之间产生尖峰时间相关性,而令人困惑的是,实验研究未能证明存在这种相关性。一种可能的解决方案源于基底神经节细胞放电模式的研究,这些研究表明它们几乎都是起搏器细胞。它们的高放电率不依赖于突触兴奋,但它们不规则地放电,因为密集的突触输入通常会干扰它们自主活动的时间。理论和计算研究表明,重复放电神经元对共享输入或相互突触耦合的反应常常违背了关于时间突触整合的经典直觉。这些神经元之间的尖峰时间模式取决于起搏的离子机制、背景无相关细胞和突触噪声的水平、神经元的放电率以及它们的突触连接的特性。将这些概念应用于基底神经节回路表明,这些核的连接和生理学可能被配置为防止神经元之间建立永久性的尖峰时间关系。帕金森病中高度同步的活动振荡模式的发展可能是由于一些基底神经节神经元失去起搏功能,以及负责主动去相关的机制随之崩溃所致。

相似文献

1
Active decorrelation in the basal ganglia.基底神经节中的主动去相关。
Neuroscience. 2013 Oct 10;250:467-82. doi: 10.1016/j.neuroscience.2013.07.032. Epub 2013 Jul 24.
2
Propagation of Oscillations in the Indirect Pathway of the Basal Ganglia.基底神经节间接通路中振荡的传播。
J Neurosci. 2023 Aug 30;43(35):6112-6125. doi: 10.1523/JNEUROSCI.0445-23.2023. Epub 2023 Jul 3.
4
Substantia nigra control of basal ganglia nuclei.黑质对基底神经节核团的控制。
J Neural Transm Suppl. 2009(73):91-101. doi: 10.1007/978-3-211-92660-4_7.

引用本文的文献

8
Neural heterogeneity controls computations in spiking neural networks.神经多样性控制着尖峰神经网络的计算。
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2311885121. doi: 10.1073/pnas.2311885121. Epub 2024 Jan 10.
10
Contributions of the Basal Ganglia to Visual Perceptual Decisions.基底神经节对视觉感知决策的贡献。
Annu Rev Vis Sci. 2023 Sep 15;9:385-407. doi: 10.1146/annurev-vision-111022-123804.

本文引用的文献

8
Dichotomous organization of the external globus pallidus.外苍白球的二分组织。
Neuron. 2012 Jun 21;74(6):1075-86. doi: 10.1016/j.neuron.2012.04.027.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验