Suppr超能文献

单个神经元中的情境依赖编码。

Context-dependent coding in single neurons.

作者信息

Mease Rebecca A, Lee SangWook, Moritz Anna T, Powers Randall K, Binder Marc D, Fairhall Adrienne L

机构信息

University of Washington, Seattle, WA, USA.

出版信息

J Comput Neurosci. 2014 Dec;37(3):459-80. doi: 10.1007/s10827-014-0513-9. Epub 2014 Jul 3.

Abstract

The linear-nonlinear cascade model (LN model) has proven very useful in representing a neural system's encoding properties, but has proven less successful in reproducing the firing patterns of individual neurons whose behavior is strongly dependent on prior firing history. While the cell's behavior can still usefully be considered as feature detection acting on a fluctuating input, some of the coding capacity of the cell is taken up by the increased firing rate due to a constant "driving" direct current (DC) stimulus. Furthermore, both the DC input and the post-spike refractory period generate regular firing, reducing the spike-timing entropy available for encoding time-varying fluctuations. In this paper, we address these issues, focusing on the example of motoneurons in which an afterhyperpolarization (AHP) current plays a dominant role regularizing firing behavior. We explore the accuracy and generalizability of several alternative models for single neurons under changes in DC and variance of the stimulus input. We use a motoneuron simulation to compare coding models in neurons with and without the AHP current. Finally, we quantify the tradeoff between instantaneously encoding information about fluctuations and about the DC.

摘要

线性-非线性级联模型(LN模型)已被证明在描述神经系统的编码特性方面非常有用,但在再现行为强烈依赖于先前放电历史的单个神经元的放电模式方面却不太成功。虽然细胞的行为仍可有效地视为对波动输入进行特征检测,但由于恒定的“驱动”直流(DC)刺激,细胞的一些编码能力被增加的放电率所占据。此外,直流输入和峰后不应期都会产生规则放电,从而减少了可用于编码时变波动的峰时熵。在本文中,我们针对这些问题展开研究,重点以运动神经元为例,其中超极化后电流(AHP)在调节放电行为方面起主导作用。我们探讨了几种替代的单神经元模型在直流变化和刺激输入方差变化情况下的准确性和通用性。我们使用运动神经元模拟来比较有和没有AHP电流的神经元中的编码模型。最后,我们量化了在即时编码波动信息和直流信息之间的权衡。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验