Department of Radiation Medicine, Faculty of Preventive Medicine, Airforce Medical University, 169(#) ChangLe West Road, Xi'an 710032, China.
Department of Radiation Biology, Faculty of Preventive Medicine, Airforce Medical University, 169(#) ChangLe West Road, Xi'an 710032, China; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8001, USA.
Neuroscience. 2018 Nov 1;391:50-59. doi: 10.1016/j.neuroscience.2018.09.003. Epub 2018 Sep 9.
The olfactory circuitry in mice involves a well-characterized, vertical receptor type-specific organization, but the localized inhibitory effect from granule cells on action potentials that propagate laterally in secondary dendrites of mitral cell remains open to debate. To understand the functional dynamics of the lateral (horizontal) circuits, we analyzed odor-induced signaling using transgenic mice expressing a genetically encoded Ca indicator specifically in mitral/tufted and some juxtaglomerular cells. Optical imaging of the dorsal olfactory bulb (dOB) revealed specific patterns of glomerular activation in response to odor presentation or direct electric stimulation of the olfactory nerve (ON). Application of a mixture of ionotropic and metabotropic glutamate receptor antagonists onto the exposed dOB completely abolished the responses to direct stimulation of the ON as well as discrete odor-evoked glomerular responses patterns, while a spatially more widespread response component increased and expanded into previously nonresponsive regions. To test whether the widespread odor response component represented signal propagation along mitral cell secondary dendrites, an NMDA receptor antagonist alone was applied to the dOB and was found to also increase and expand odor-evoked response patterns. Finally, with dOB excitatory synaptic transmission completely blocked, application of 1 mM muscimol (a GABA receptor agonist) to a circumscribed volume in the deep external plexiform layer (EPL) induced an odor non-responsive area. These results indicate that odor stimulation can activate olfactory reciprocal synapses and control lateral interactions among olfactory glomerular modules along a wide range of mitral cell secondary dendrites by modulating the inhibitory effect from granule cells.
在小鼠中,嗅觉回路涉及一种特征明确的、垂直的受体类型特异性组织,但颗粒细胞对横向传播的动作电位的局部抑制作用在二尖瓣细胞的次级树突中仍然存在争议。为了理解横向(水平)回路的功能动态,我们使用在二尖瓣/丛细胞和一些靠近肾小球细胞中特异性表达遗传编码钙指示剂的转基因小鼠分析了气味诱导的信号。对背侧嗅球(dOB)的光学成像显示,在对气味呈现或嗅神经(ON)的直接电刺激的反应中,有特定的肾小球激活模式。将离子型和代谢型谷氨酸受体拮抗剂混合物施加到暴露的 dOB 上,完全消除了对 ON 的直接刺激以及离散气味诱发的肾小球反应模式的反应,而空间上更广泛的反应成分增加并扩展到以前无反应的区域。为了测试广泛的气味反应成分是否代表沿着二尖瓣细胞次级树突的信号传播,单独将 NMDA 受体拮抗剂应用于 dOB,发现它也增加并扩展了气味诱发的反应模式。最后,当 dOB 的兴奋性突触传递完全阻断时,将 1mM 毒蕈碱(一种 GABA 受体激动剂)施加到深外部丛状层(EPL)的一个限定体积中,会诱导一个无气味反应区域。这些结果表明,气味刺激可以激活嗅觉交叉突触,并通过调节颗粒细胞的抑制作用来控制嗅觉肾小球模块之间的横向相互作用,从而控制嗅觉肾小球模块之间的横向相互作用,从而控制嗅觉肾小球模块之间的横向相互作用。