Department of Physiology and Biophysics, University of Washington, Seattle, WA.
Department of Biochemistry, University of Oxford, Oxford, UK.
J Cell Biol. 2018 Nov 5;217(11):3886-3900. doi: 10.1083/jcb.201711181. Epub 2018 Sep 12.
Kinetochores are multiprotein machines that drive chromosome segregation by maintaining persistent, load-bearing linkages between chromosomes and dynamic microtubule tips. Kinetochores in commonly studied eukaryotes bind microtubules through widely conserved components like the Ndc80 complex. However, in evolutionarily divergent kinetoplastid species such as , which causes sleeping sickness, the kinetochores assemble from a unique set of proteins lacking homology to any known microtubule-binding domains. Here, we show that the kinetochore protein KKT4 binds directly to microtubules and maintains load-bearing attachments to both growing and shortening microtubule tips. The protein localizes both to kinetochores and to spindle microtubules in vivo, and its depletion causes defects in chromosome segregation. We define a microtubule-binding domain within KKT4 and identify several charged residues important for its microtubule-binding activity. Thus, despite its lack of significant similarity to other known microtubule-binding proteins, KKT4 has key functions required for driving chromosome segregation. We propose that it represents a primary element of the kinetochore-microtubule interface in kinetoplastids.
着丝粒是一种多蛋白机器,通过在染色体和动态微管末端之间保持持久的、承重的连接,驱动染色体分离。在普遍研究的真核生物中,着丝粒通过广泛保守的成分(如 Ndc80 复合物)与微管结合。然而,在进化上有差异的动基体生物种中,例如引起昏睡病的,其着丝粒由一组独特的蛋白质组装而成,这些蛋白质与任何已知的微管结合结构域都没有同源性。在这里,我们表明, 着丝粒蛋白 KKT4 直接与微管结合,并维持与生长和缩短的微管末端的承重连接。该蛋白在体内定位于着丝粒和纺锤体微管上,其缺失会导致染色体分离缺陷。我们在 KKT4 内定义了一个微管结合结构域,并确定了几个对其微管结合活性很重要的带电残基。因此,尽管 KKT4 与其他已知的微管结合蛋白没有显著的相似性,但它具有驱动染色体分离所必需的关键功能。我们提出,它代表了动基体生物种着丝粒-微管界面的主要元件。