Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Paısos Catalans, 16, 43007, Tarragona, Spain.
Phys Chem Chem Phys. 2018 Oct 7;20(37):24192-24200. doi: 10.1039/c8cp04401e. Epub 2018 Sep 13.
In an effort to describe π-hole interactions, we undertook accurate high-resolution X-ray diffraction analyses of single crystals of 1,4-dinitrobenzene, a co-crystal of cis-tartaric acid and bis-pyridine N-oxide and the hydrochloride of B-4-pyridinylboronic acid. We selected these three compounds owing to the π-hole accessibility features that the sp hybridized B, C and N atoms provide, thus allowing us to compare the fundamental characteristics of π-hole interactions using Bader's Atom in Molecules (AIM) theory. This particular study required extremely accurate experimental diffraction data, because the interaction of interest is weak. As shown by the experimental charge density maps of the -YO (Y = B, C, N) units, we assign the depletion of electron-density present in the central boron, carbon and nitrogen atoms (electrophilic π-holes) as the main origin for the establishment of intermolecular Lewis acid-Lewis base attractive interaction with complementary electron-rich regions. Unexpectedly, the Bader's analyses of both experimentally and theoretically calculated charge distribution maps for the solid involving the - BOH group do not show the presence of bond paths, neither of the bond critical points, between the interacting electron rich sites and the boron or carbon atoms featuring the electron hole. In contrast, these topological descriptors of chemical interactions for the AIM theory were easily located in the solid-state structures of the compounds involving the carboxylic and the nitro groups.
为了描述π-hole 相互作用,我们对 1,4-二硝基苯、顺式酒石酸和双吡啶 N-氧化物以及 B-4-吡啶硼酸盐酸盐的单晶进行了精确的高分辨率 X 射线衍射分析。我们选择这三种化合物是因为 sp 杂化的 B、C 和 N 原子提供的 π-hole 可及性特征,从而使我们能够使用 Bader 的分子中的原子(AIM)理论比较π-hole 相互作用的基本特征。这项特殊的研究需要极其精确的实验衍射数据,因为我们感兴趣的相互作用很弱。正如-YO(Y = B、C、N)单元的实验电荷密度图所示,我们将存在于中心硼、碳和氮原子(亲电π-hole)中的电子密度耗尽归因于建立与互补富电子区域的分子间路易斯酸-路易斯碱吸引相互作用的主要原因。出乎意料的是,对涉及-BOH 基团的固体的实验和理论计算电荷分布图的 Bader 分析均未显示出存在键路径,也不存在键临界点,在相互作用的富电子位点和具有电子孔的硼或碳原子之间。相比之下,这些 AIM 理论的化学相互作用的拓扑描述符很容易在涉及羧酸和硝基的化合物的固态结构中找到。