Institute of Nuclear Techniques, Budapest University of Technology and Economics, Budapest, Hungary.
Radiol Oncol. 2018 Mar 24;52(3):337-345. doi: 10.2478/raon-2018-0013.
Background In emission tomography maximum likelihood expectation maximization reconstruction technique has replaced the analytical approaches in several applications. The most important drawback of this iterative method is its linear rate of convergence and the corresponding computational burden. Therefore, simplifications are usually required in the Monte Carlo simulation of the back projection step. In order to overcome these problems, a reconstruction code has been developed with graphical processing unit based Monte Carlo engine which enabled full physical modelling in the back projection. Materials and methods Code performance was evaluated with simulations on two geometries. One is a sophisticated scanner geometry which consists of a dodecagon with inscribed circle radius of 8.7 cm, packed on each side with an array of 39 × 81 LYSO detector pixels of 1.17 mm sided squares, similar to a Mediso nanoScan PET/CT scanner. The other, simplified geometry contains a 38,4mm long interval as a voxel space, detector pixels are assigned in two parallel sections each containing 81 crystals of a size 1.17×1.17 mm. Results We have demonstrated that full Monte Carlo modelling in the back projection step leads to material dependent inhomogeneities in the reconstructed image. The reasons behind this apparently anomalous behaviour was analysed in the simplified system by means of singular value decomposition and explained by different speed of convergence. Conclusions To still take advantage of the higher noise stability of the full physical modelling, a new filtering technique is proposed for convergence acceleration. Some theoretical considerations for the practical implementation and for further development are also presented.
背景
在发射断层扫描中,最大似然期望最大化重建技术已经在多个应用中取代了分析方法。这个迭代方法的最重要缺点是其线性收敛率和相应的计算负担。因此,在后投影步骤的蒙特卡罗模拟中通常需要进行简化。为了克服这些问题,已经开发了一种基于图形处理单元的蒙特卡罗引擎的重建代码,该代码能够在后投影中进行完整的物理建模。
材料和方法
使用两种几何形状的模拟对代码性能进行了评估。一个是复杂的扫描仪几何形状,它由一个内接圆半径为 8.7 厘米的十二边形组成,每一侧都装有一个由 39×81 个 LYSO 探测器像素组成的阵列,每个像素的边长为 1.17 毫米,类似于 Mediso nanoScan PET/CT 扫描仪。另一个简化的几何形状包含一个 38.4 毫米长的间隔作为体素空间,探测器像素分配在两个平行的部分中,每个部分包含 81 个大小为 1.17×1.17 毫米的晶体。
结果
我们已经证明,在后投影步骤中的完整蒙特卡罗建模会导致重建图像中的材料依赖性不均匀性。通过奇异值分解,在简化系统中分析了这种明显异常行为的原因,并通过不同的收敛速度进行了解释。
结论
为了仍然利用完整物理建模的更高噪声稳定性,提出了一种新的滤波技术来加速收敛。还提出了一些用于实际实施和进一步开发的理论考虑。