Suppr超能文献

使用全变差正则化的 3D TOF-PET 图像重建。

3D TOF-PET image reconstruction using total variation regularization.

机构信息

Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland.

Department of Complex Systems, National Centre for Nuclear Research, 05-400 Otwock-Świerk, Poland.

出版信息

Phys Med. 2020 Dec;80:230-242. doi: 10.1016/j.ejmp.2020.10.011. Epub 2020 Nov 13.

Abstract

In this paper we introduce a semi-analytic algorithm for 3-dimensional image reconstruction for positron emission tomography (PET). The method consists of the back-projection of the acquired data into the most likely image voxel according to time-of-flight (TOF) information, followed by the filtering step in the image space using an iterative optimization algorithm with a total variation (TV) regularization. TV regularization in image space is more computationally efficient than usual iterative optimization methods for PET reconstruction with full system matrix that use TV regularization. The efficiency comes from the one-time TOF back-projection step that might also be described as a reformatting of the acquired data. An important aspect of our work concerns the evaluation of the filter operator of the linear transform mapping an original radioactive tracer distribution into the TOF back-projected image. We obtain concise, closed-form analytical formula for the filter operator. The proposed method is validated with the Monte Carlo simulations of the NEMA IEC phantom using a one-layer, 50 cm-long cylindrical device called Jagiellonian PET scanner. The results show a better image quality compared with the reference TOF maximum likelihood expectation maximization algorithm.

摘要

在本文中,我们介绍了一种用于正电子发射断层扫描(PET)的三维图像重建的半分析算法。该方法包括根据飞行时间(TOF)信息将采集到的数据反向投影到最可能的图像体素,然后在图像空间中使用具有全变差(TV)正则化的迭代优化算法进行滤波步骤。与使用全系统矩阵的 PET 重建的常用迭代优化方法相比,图像空间中的 TV 正则化在计算上更有效,因为它只需要进行一次 TOF 反向投影步骤,该步骤也可以描述为对采集数据的重新格式化。我们工作的一个重要方面涉及到对线性变换的滤波器算子的评估,该线性变换将原始放射性示踪剂分布映射到 TOF 反向投影图像。我们得到了滤波器算子的简洁、闭式解析公式。该方法使用称为雅盖隆大学 PET 扫描仪的一层、50 厘米长的圆柱形设备,通过 NEMA IEC 体模的蒙特卡罗模拟进行了验证。结果表明,与参考的 TOF 最大似然期望最大化算法相比,该方法具有更好的图像质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验