RoViT, University of Alicante, 03690 Sant Vicent del Raspeig, Spain.
RobInLab, Universitat Jaume-I, 12071 Castellón, Spain.
Comput Intell Neurosci. 2018 Aug 23;2018:9179462. doi: 10.1155/2018/9179462. eCollection 2018.
Aimed at building autonomous service robots, reasoning, perception, and action should be properly integrated. In this paper, the depth cue has been analysed as an early stage given its importance for robotic tasks. So, from neuroscience findings, a hierarchical four-level architecture has been designed and implemented. Mainly, from a stereo image pair, a set of complex Gabor filters is applied for estimating an egocentric quantitative disparity map. This map leads to a quantitative depth scene representation that provides the raw input for a qualitative approach. So, the reasoning method infers the data required to make the right decision at any time. As it will be shown, the experimental results highlight the robust performance of the biologically inspired approach presented in this paper.
针对自主服务机器人的构建,推理、感知和行动应该得到适当的整合。在本文中,由于深度提示对于机器人任务非常重要,因此对其进行了分析。基于神经科学的研究成果,设计并实现了一个分层的四级架构。主要是从立体图像对中,应用一组复杂的 Gabor 滤波器来估计以自我为中心的定量视差图。该地图提供了定量深度场景表示,为定性方法提供了原始输入。因此,推理方法推断出随时做出正确决策所需的数据。正如将展示的那样,实验结果突出了本文提出的受生物启发方法的稳健性能。