Suppr超能文献

光电运动捕捉系统在测量胸腰椎矢状面姿势及三维活动范围时的测量间期可靠性

Between-session reliability of opto-electronic motion capture in measuring sagittal posture and 3-D ranges of motion of the thoracolumbar spine.

作者信息

Mousavi Seyed Javad, Tromp Rebecca, Swann Matthew C, White Andrew P, Anderson Dennis E

机构信息

Beth Israel Deaconess Medical Center, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.

Beth Israel Deaconess Medical Center, Boston, MA, United States.

出版信息

J Biomech. 2018 Oct 5;79:248-252. doi: 10.1016/j.jbiomech.2018.08.033. Epub 2018 Sep 3.

Abstract

This study evaluated between-session reliability of opto-electronic motion capture to measure trunk posture and three-dimensional ranges of motion (ROM). Nineteen healthy participants aged 24-74 years underwent spine curvature, pelvic tilt and trunk ROM measurements on two separate occasions. Rigid four-marker clusters were attached to the skin overlying seven spinous processes, plus single markers on pelvis landmarks. Rigid body rotations of spine marker clusters were calculated to determine neutral posture and ROM in flexion, extension, total lateral bending (left-right) and total axial rotation (left-right). Segmental spine ROM values were in line with previous reports using opto-electronic motion capture. Intraclass correlation coefficients (ICC) and standard error of measurement (SEM) were calculated as measures of between-session reliability and measurement error, respectively. Retroreflective markers showed fair to excellent between-session reliability to measure thoracic kyphosis, lumbar lordosis, and pelvic tilt (ICC = 0.82, 0.63, and 0.54, respectively). Thoracic and lumbar segments showed highest reliabilities in total axial rotation (ICC = 0.78) and flexion-extension (ICC = 0.77-0.79) ROM, respectively. Pelvic segment showed highest ICC values in flexion (ICC = 0.78) and total axial rotation (ICC = 0.81) trials. Furthermore, it was estimated that four or fewer repeated trials would provide good reliability for key ROM outcomes, including lumbar flexion, thoracic and lumbar lateral bending, and thoracic axial rotation. This demonstration of reliability is a necessary precursor to quantifying spine kinematics in clinical studies, including assessing changes due to clinical treatment or disease progression.

摘要

本研究评估了光电运动捕捉技术测量躯干姿势和三维运动范围(ROM)的组间可靠性。19名年龄在24 - 74岁的健康参与者在两个不同时间接受了脊柱曲率、骨盆倾斜度和躯干ROM测量。在覆盖七个棘突的皮肤上附着刚性四标记簇,以及骨盆标志点上的单个标记。计算脊柱标记簇的刚体旋转,以确定中立姿势以及屈伸、全侧屈(左右)和全轴向旋转(左右)的ROM。节段性脊柱ROM值与先前使用光电运动捕捉技术的报告一致。计算组内相关系数(ICC)和测量标准误差(SEM),分别作为组间可靠性和测量误差的指标。反光标记在测量胸椎后凸、腰椎前凸和骨盆倾斜度时显示出较好至极好的组间可靠性(ICC分别为0.82、0.63和0.54)。胸椎和腰椎节段在全轴向旋转(ICC = 0.78)和屈伸(ICC = 0.77 - 0.79)ROM中分别显示出最高的可靠性。骨盆节段在屈曲(ICC = 0.78)和全轴向旋转(ICC = 0.81)试验中显示出最高的ICC值。此外,据估计,四次或更少的重复试验将为关键ROM结果提供良好的可靠性,包括腰椎前屈、胸腰椎侧屈和胸椎轴向旋转。这种可靠性的证明是在临床研究中量化脊柱运动学的必要前提,包括评估临床治疗或疾病进展引起的变化。

相似文献

2
6
Kinematics of the thoracic spine in trunk lateral bending: in vivo three-dimensional analysis.
Spine J. 2014 Sep 1;14(9):1991-9. doi: 10.1016/j.spinee.2013.11.054. Epub 2013 Dec 10.
7
Normal functional range of motion of the lumbar spine during 15 activities of daily living.
J Spinal Disord Tech. 2010 Apr;23(2):106-12. doi: 10.1097/BSD.0b013e3181981823.
9
Should a standing or seated reference posture be used when normalizing seated spine kinematics?
J Biomech. 2014 Jul 18;47(10):2371-7. doi: 10.1016/j.jbiomech.2014.04.023. Epub 2014 Apr 28.

引用本文的文献

1
Effects of whole-body cryostimulation on spinal and shoulder range of motion in individuals with obesity.
Front Rehabil Sci. 2025 Jul 23;6:1568280. doi: 10.3389/fresc.2025.1568280. eCollection 2025.
2
Intervertebral Lumbar Spine Kinematics in Chronic Low Back Pain Patients Measured Using Biplane Radiography.
JOR Spine. 2025 May 14;8(2):e70069. doi: 10.1002/jsp2.70069. eCollection 2025 Jun.
4
Optical Marker-Based Motion Capture of the Human Spine: A Scoping Review of Study Design and Outcomes.
Ann Biomed Eng. 2024 Sep;52(9):2373-2387. doi: 10.1007/s10439-024-03567-0. Epub 2024 Jul 18.
6
Rehabilitation Practitioners' Perceptions of Optimal Sitting and Standing Posture in Men with Normal Weight and Obesity.
Bioengineering (Basel). 2023 Feb 6;10(2):210. doi: 10.3390/bioengineering10020210.
8
Walking Biomechanics and Spine Loading in Patients With Symptomatic Lumbar Spinal Stenosis.
Front Bioeng Biotechnol. 2021 Nov 18;9:751155. doi: 10.3389/fbioe.2021.751155. eCollection 2021.
9
Subject-Specific Spino-Pelvic Models Reliably Measure Spinal Kinematics During Seated Forward Bending in Adult Spinal Deformity.
Front Bioeng Biotechnol. 2021 Sep 1;9:720060. doi: 10.3389/fbioe.2021.720060. eCollection 2021.
10
The Influence of Kinematic Constraints on Model Performance During Inverse Kinematics Analysis of the Thoracolumbar Spine.
Front Bioeng Biotechnol. 2021 Jul 29;9:688041. doi: 10.3389/fbioe.2021.688041. eCollection 2021.

本文引用的文献

2
Chronic low back pain patients walk with locally altered spinal kinematics.
J Biomech. 2017 Jul 26;60:211-218. doi: 10.1016/j.jbiomech.2017.06.042. Epub 2017 Jul 5.
3
Multi-segmental thoracic spine kinematics measured dynamically in the young and elderly during flexion.
Hum Mov Sci. 2017 Aug;54:230-239. doi: 10.1016/j.humov.2017.05.011. Epub 2017 May 20.
4
The relationships between low back pain and lumbar lordosis: a systematic review and meta-analysis.
Spine J. 2017 Aug;17(8):1180-1191. doi: 10.1016/j.spinee.2017.04.034. Epub 2017 May 2.
5
Consistency of a lumbar movement pattern across functional activities in people with low back pain.
Clin Biomech (Bristol). 2017 May;44:45-51. doi: 10.1016/j.clinbiomech.2017.03.004. Epub 2017 Mar 7.
6
Characteristics of thoracic and lumbar movements during gait in lumbar spinal stenosis patients before and after decompression surgery.
Clin Biomech (Bristol). 2016 Dec;40:45-51. doi: 10.1016/j.clinbiomech.2016.10.016. Epub 2016 Oct 29.
7
Quantifying spinal gait kinematics using an enhanced optical motion capture approach in adolescent idiopathic scoliosis.
Gait Posture. 2016 Feb;44:231-7. doi: 10.1016/j.gaitpost.2015.12.036. Epub 2015 Dec 29.
8
Between-day reliability of three-dimensional motion analysis of the trunk: A comparison of marker based protocols.
J Biomech. 2016 Mar 21;49(5):807-811. doi: 10.1016/j.jbiomech.2016.02.030. Epub 2016 Feb 18.
10
Repeatability of kinematic and electromyographical measures during standing and trunk motion: how many trials are sufficient?
J Electromyogr Kinesiol. 2015 Apr;25(2):232-8. doi: 10.1016/j.jelekin.2014.12.007. Epub 2015 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验