Weller Daniel S, Wang Luonan, Mugler John P, Meyer Craig H
University of Virginia, Charlottesville, VA 22904, USA.
University of Virginia School of Medicine, Charlottesville, VA 22908, USA.
Magn Reson Imaging. 2019 Jan;55:36-45. doi: 10.1016/j.mri.2018.09.008. Epub 2018 Sep 11.
Magnetic resonance imaging of patients who find difficulty lying still or holding their breath can be challenging. Unresolved intra-frame motion yields blurring artifacts and limits spatial resolution. To correct for intra-frame non-rigid motion, such as in pediatric body imaging, this paper describes a multi-scale technique for joint estimation of the motion occurring during the acquisition and of the desired uncorrupted image. This technique regularizes the motion coefficients to enforce invertibility and minimize numerical instability. This multi-scale approach takes advantage of variable-density sampling patterns used in accelerated imaging to resolve large motion from a coarse scale. The resulting method improves image quality for a set of two-dimensional reconstructions from data simulated with independently generated deformations, with statistically significant increases in both peak signal to error ratio and structural similarity index. These improvements are consistent across varying undersampling factors and severities of motion and take advantage of the variable density sampling pattern.
对于那些难以保持静止或屏息的患者,进行磁共振成像可能具有挑战性。帧内未解决的运动会产生模糊伪影并限制空间分辨率。为了校正帧内非刚性运动,例如在儿科身体成像中,本文描述了一种多尺度技术,用于联合估计采集过程中发生的运动以及所需的未损坏图像。该技术对运动系数进行正则化,以确保可逆性并最小化数值不稳定性。这种多尺度方法利用了加速成像中使用的可变密度采样模式,从粗尺度上解决大的运动。对于一组使用独立生成的变形模拟的数据进行的二维重建,所得方法提高了图像质量,峰值信噪比和结构相似性指数均有统计学意义的增加。这些改进在不同的欠采样因子和运动严重程度下都是一致的,并利用了可变密度采样模式。