Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Boston MA, 02114, United States of America.
Harvard Medical School, Boston MA, 02115, United States of America.
Phys Med Biol. 2020 Dec 2;65(23):235022. doi: 10.1088/1361-6560/abb31d.
Image quality of positron emission tomography (PET) reconstructions is degraded by subject motion occurring during the acquisition. Magnetic resonance (MR)-based motion correction approaches have been studied for PET/MR scanners and have been successful at capturing regular motion patterns, when used in conjunction with surrogate signals (e.g. navigators) to detect motion. However, handling irregular respiratory motion and bulk motion remains challenging. In this work, we propose an MR-based motion correction method relying on subspace-based real-time MR imaging to estimate motion fields used to correct PET reconstructions. We take advantage of the low-rank characteristics of dynamic MR images to reconstruct high-resolution MR images at high frame rates from highly undersampled k-space data. Reconstructed dynamic MR images are used to determine motion phases for PET reconstruction and estimate phase-to-phase nonrigid motion fields able to capture complex motion patterns such as irregular respiratory and bulk motion. MR-derived binning and motion fields are used for PET reconstruction to generate motion-corrected PET images. The proposed method was evaluated on in vivo data with irregular motion patterns. MR reconstructions accurately captured motion, outperforming state-of-the-art dynamic MR reconstruction techniques. Evaluation of PET reconstructions demonstrated the benefits of the proposed method in terms of motion artifacts reduction, improving the contrast-to-noise ratio by up to a factor 3 and achieveing a target-to-background ratio up to 90% superior compared to standard/uncorrected methods. The proposed method can improve the image quality of motion-corrected PET reconstructions in clinical applications.
正电子发射断层扫描(PET)重建的图像质量会因采集过程中发生的受检者运动而降低。已经针对 PET/MR 扫描仪研究了基于磁共振(MR)的运动校正方法,并且当与用于检测运动的替代信号(例如导航器)结合使用时,成功地捕获了规则运动模式。然而,处理不规则呼吸运动和整体运动仍然具有挑战性。在这项工作中,我们提出了一种基于 MR 的运动校正方法,该方法依赖于基于子空间的实时 MR 成像,以估计用于校正 PET 重建的运动场。我们利用动态 MR 图像的低秩特性,从高度欠采样的 k 空间数据中以高帧率重建高分辨率 MR 图像。重建的动态 MR 图像用于确定 PET 重建的运动相位,并估计能够捕获不规则呼吸和整体运动等复杂运动模式的相位到相位非刚性运动场。MR 衍生的 binning 和运动场用于 PET 重建,以生成运动校正的 PET 图像。所提出的方法在具有不规则运动模式的体内数据上进行了评估。MR 重建准确地捕获了运动,优于最先进的动态 MR 重建技术。对 PET 重建的评估表明,该方法在减少运动伪影、提高对比度噪声比方面具有优势,最高可达 3 倍,并实现了比标准/未校正方法高 90%的目标到背景比。该方法可以提高临床应用中运动校正的 PET 重建的图像质量。