Department of Nanochemistry, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Republic of Korea.
Scientific Investigation Laboratory, Ministry of National Defense, 22 Itaewon-ro, Yongsan-gu, Seoul, 04383, Republic of Korea.
J Am Soc Mass Spectrom. 2018 Dec;29(12):2368-2379. doi: 10.1007/s13361-018-2060-5. Epub 2018 Sep 13.
To understand the anomalous collision-induced dissociation (CID) behavior of the proton-bound Hoogsteen base pair of cytosine (C) and guanine (G), C:H∙∙∙G, we investigated CID of a homologue series of proton-bound heterodimers of C, 1-methylcytosine, and 5-methylcytosine with G as a common base partner. The CID experiments were performed in an energy-resolved way (ER-CID) under both multiple and near-single collision conditions. The relative stabilities of the protonated complexes examined by ER-CID suggested that the proton-bound complexes produced by electrospray ionization in this study are proton-bound Hoogsteen base pairs. On the other hand, in contrast to the other base pairs, CID of C:H∙∙∙G exhibited more abundant productions of C:H, the fragment protonated on the moiety with a smaller proton affinity, than that of G:H. This appeared to contradict general prediction based on the kinetic method. However, further theoretical exploration of potential energy surfaces found that there can be facile proton transfers in the proton-bound Hoogsteen base pairs during the CID process, which makes the process accessible to an additional product state of O-protonated C for C:H fragments. The presence of an additional dissociation channel, which in other words corresponds to twofold degeneracy in the transition state leading to C:H fragments, effectively doubles the apparent reaction rate for production of C:H. In this way, the process gives rise to the anomaly, the observed pronounced formation of C:H in the CID of the proton-bound Hoogsteen base pair, C:H∙∙∙G. Graphical Abstract ᅟ.
为了理解胞嘧啶(C)和鸟嘌呤(G)之间的质子结合 Hoogsteen 碱基对 C:H∙∙∙G 的异常碰撞诱导解离(CID)行为,我们研究了 C 与 G 作为共同碱基对的质子结合杂二聚体的同源系列的 CID。CID 实验在能量分辨(ER-CID)条件下在多碰撞和近单碰撞条件下进行。ER-CID 分析表明,所研究的质子化配合物的相对稳定性表明,本研究中通过电喷雾电离产生的质子化配合物是质子结合的 Hoogsteen 碱基对。另一方面,与其他碱基对相比,C:H∙∙∙G 的 CID 表现出更多的 C:H 碎片的丰富产生,该碎片是在质子亲和力较小的部分上质子化的,而不是 G:H 的碎片。这似乎与基于动力学方法的一般预测相矛盾。然而,对势能面的进一步理论探索发现,在 CID 过程中,质子结合的 Hoogsteen 碱基对中可以发生容易的质子转移,这使得该过程可以通向 O-质子化 C 的额外产物状态,用于 C:H 片段。存在额外的解离通道,换句话说,对应于导致 C:H 片段的过渡态中的两倍简并性,有效地将 C:H 产物的表观反应速率提高了一倍。通过这种方式,该过程产生了异常现象,即在质子结合的 Hoogsteen 碱基对 C:H∙∙∙G 的 CID 中观察到 C:H 的明显形成。