Suppr超能文献

InhA,来自 的烯酰基硫酯酶,在催化过程中形成共价加合物。

InhA, the enoyl-thioester reductase from forms a covalent adduct during catalysis.

机构信息

From the Departments of Biochemistry and Synthetic Metabolism and.

Microbial Protein Structure, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany and.

出版信息

J Biol Chem. 2018 Nov 2;293(44):17200-17207. doi: 10.1074/jbc.RA118.005405. Epub 2018 Sep 14.

Abstract

The enoyl-thioester reductase InhA catalyzes an essential step in fatty acid biosynthesis of and is a key target of antituberculosis drugs to combat multidrug-resistant strains. This has prompted intense interest in the mechanism and intermediates of the InhA reaction. Here, using enzyme mutagenesis, NMR, stopped-flow spectroscopy, and LC-MS, we found that the NADH cofactor and the CoA thioester substrate form a covalent adduct during the InhA catalytic cycle. We used the isolated adduct as a molecular probe to directly access the second half-reaction of the catalytic cycle of InhA ( the proton transfer), independently of the first half-reaction ( the initial hydride transfer) and to assign functions to two conserved active-site residues, Tyr-158 and Thr-196. We found that Tyr-158 is required for the stereospecificity of protonation and that Thr-196 is partially involved in hydride transfer and protonation. The natural tendency of InhA to form a covalent C2-ene adduct calls for a careful reconsideration of the enzyme's reaction mechanism. It also provides the basis for the development of effective tools to study, manipulate, and inhibit the catalytic cycle of InhA and related enzymes of the short-chain dehydrogenase/reductase (SDR) superfamily. In summary, our work has uncovered the formation of a covalent adduct during the InhA catalytic cycle and identified critical residues required for catalysis, providing further insights into the InhA reaction mechanism important for the development of antituberculosis drugs.

摘要

烯酰基辅酶 A 还原酶 InhA 催化脂肪酸生物合成的一个必需步骤,是抗结核药物对抗多药耐药 菌株的关键靶标。这促使人们对 InhA 反应的机制和中间体产生了浓厚的兴趣。在这里,我们使用酶突变、NMR、停流光谱和 LC-MS 发现,在 InhA 催化循环中,NADH 辅酶和 CoA 硫酯底物形成共价加合物。我们使用分离的加合物作为分子探针,直接进入 InhA 催化循环的后半反应(质子转移),而无需进行前半反应(初始氢转移),并确定两个保守的活性位点残基 Tyr-158 和 Thr-196 的功能。我们发现 Tyr-158 对于质子化的立体特异性是必需的,而 Thr-196 部分参与氢转移和质子化。InhA 形成共价 C2-烯加合物的自然倾向要求我们重新仔细考虑该酶的反应机制。它还为研究、操纵和抑制 InhA 催化循环以及短链脱氢酶/还原酶 (SDR) 超家族的相关酶提供了有效的工具提供了基础。总之,我们的工作揭示了 InhA 催化循环中形成共价加合物,并确定了催化所需的关键残基,为开发抗结核药物的 InhA 反应机制提供了进一步的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/889c/6222099/4f77d7bdd4f7/zbc0451895610001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验