Suppr超能文献

采用分类器融合策略鉴定抗血管生成肽。

Using a Classifier Fusion Strategy to Identify Anti-angiogenic Peptides.

机构信息

School of Mechanical, Electrical and Information Engineering, Shandong University at Weihai, Weihai, 264209, China.

出版信息

Sci Rep. 2018 Sep 14;8(1):14062. doi: 10.1038/s41598-018-32443-w.

Abstract

Anti-angiogenic peptides perform distinct physiological functions and potential therapies for angiogenesis-related diseases. Accurate identification of anti-angiogenic peptides may provide significant clues to understand the essential angiogenic homeostasis within tissues and develop antineoplastic therapies. In this study, an ensemble predictor is proposed for anti-angiogenic peptide prediction by fusing an individual classifier with the best sensitivity and another individual one with the best specificity. We investigate predictive capabilities of various feature spaces with respect to the corresponding optimal individual classifiers and ensemble classifiers. The accuracy and Matthew's Correlation Coefficient (MCC) of the ensemble classifier trained by Bi-profile Bayes (BpB) features are 0.822 and 0.649, respectively, which represents the highest prediction results among the investigated prediction models. Discriminative features are obtained from BpB using the Relief algorithm followed by the Incremental Feature Selection (IFS) method. The sensitivity, specificity, accuracy, and MCC of the ensemble classifier trained by the discriminative features reach up to 0.776, 0.888, 0.832, and 0.668, respectively. Experimental results indicate that the proposed method is far superior to the previous study for anti-angiogenic peptide prediction.

摘要

抗血管生成肽具有不同的生理功能,可为血管生成相关疾病的治疗提供潜在的方法。准确识别抗血管生成肽可能为理解组织内重要的血管生成稳态以及开发抗肿瘤治疗方法提供重要线索。在这项研究中,我们通过融合具有最佳灵敏度的个体分类器和具有最佳特异性的另一个个体分类器,提出了一种用于抗血管生成肽预测的集成预测器。我们研究了不同特征空间相对于相应最优个体分类器和集成分类器的预测能力。使用 Bi-profile Bayes (BpB) 特征训练的集成分类器的准确性和 Matthew 相关系数 (MCC) 分别为 0.822 和 0.649,在研究的预测模型中表现出最高的预测结果。使用 Relief 算法和增量特征选择 (IFS) 方法从 BpB 中获得判别特征。使用判别特征训练的集成分类器的灵敏度、特异性、准确性和 MCC 分别高达 0.776、0.888、0.832 和 0.668。实验结果表明,该方法在抗血管生成肽预测方面明显优于先前的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a859/6138733/fb3e62ed90ca/41598_2018_32443_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验