Suppr超能文献

LRSSLMDA:用于miRNA-疾病关联预测的拉普拉斯正则化稀疏子空间学习

LRSSLMDA: Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction.

作者信息

Chen Xing, Huang Li

机构信息

School of Information and Control Engineering, China University of Mining and Technology, Xuzhou, China.

Business Analytics Centre, National University of Singapore, Singapore.

出版信息

PLoS Comput Biol. 2017 Dec 18;13(12):e1005912. doi: 10.1371/journal.pcbi.1005912. eCollection 2017 Dec.

Abstract

Predicting novel microRNA (miRNA)-disease associations is clinically significant due to miRNAs' potential roles of diagnostic biomarkers and therapeutic targets for various human diseases. Previous studies have demonstrated the viability of utilizing different types of biological data to computationally infer new disease-related miRNAs. Yet researchers face the challenge of how to effectively integrate diverse datasets and make reliable predictions. In this study, we presented a computational model named Laplacian Regularized Sparse Subspace Learning for MiRNA-Disease Association prediction (LRSSLMDA), which projected miRNAs/diseases' statistical feature profile and graph theoretical feature profile to a common subspace. It used Laplacian regularization to preserve the local structures of the training data and a L1-norm constraint to select important miRNA/disease features for prediction. The strength of dimensionality reduction enabled the model to be easily extended to much higher dimensional datasets than those exploited in this study. Experimental results showed that LRSSLMDA outperformed ten previous models: the AUC of 0.9178 in global leave-one-out cross validation (LOOCV) and the AUC of 0.8418 in local LOOCV indicated the model's superior prediction accuracy; and the average AUC of 0.9181+/-0.0004 in 5-fold cross validation justified its accuracy and stability. In addition, three types of case studies further demonstrated its predictive power. Potential miRNAs related to Colon Neoplasms, Lymphoma, Kidney Neoplasms, Esophageal Neoplasms and Breast Neoplasms were predicted by LRSSLMDA. Respectively, 98%, 88%, 96%, 98% and 98% out of the top 50 predictions were validated by experimental evidences. Therefore, we conclude that LRSSLMDA would be a valuable computational tool for miRNA-disease association prediction.

摘要

预测新型微小RNA(miRNA)与疾病的关联具有重要的临床意义,因为miRNA在多种人类疾病中具有作为诊断生物标志物和治疗靶点的潜在作用。先前的研究已经证明利用不同类型的生物数据通过计算推断新的疾病相关miRNA是可行的。然而,研究人员面临着如何有效整合不同数据集并做出可靠预测的挑战。在本研究中,我们提出了一种名为拉普拉斯正则化稀疏子空间学习的计算模型用于miRNA-疾病关联预测(LRSSLMDA),该模型将miRNA/疾病的统计特征概况和图论特征概况投影到一个公共子空间。它使用拉普拉斯正则化来保留训练数据的局部结构,并使用L1范数约束来选择重要的miRNA/疾病特征进行预测。降维的优势使该模型能够轻松扩展到比本研究中所利用的数据集维度高得多的数据集。实验结果表明,LRSSLMDA优于之前的十个模型:全局留一法交叉验证(LOOCV)中的AUC为0.9178,局部LOOCV中的AUC为0.8418,表明该模型具有卓越的预测准确性;五折交叉验证中的平均AUC为0.9181±0.0004,证明了其准确性和稳定性。此外,三种类型的案例研究进一步证明了其预测能力。LRSSLMDA预测了与结肠肿瘤、淋巴瘤、肾肿瘤、食管肿瘤和乳腺肿瘤相关的潜在miRNA。在前50个预测结果中,分别有98%、88%、96%、98%和98%得到了实验证据的验证。因此,我们得出结论,LRSSLMDA将是一种用于miRNA-疾病关联预测的有价值的计算工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c578/5749861/3e896c29b717/pcbi.1005912.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验