Suppr超能文献

用于高性能超级电容器的生物质衍生杂原子掺杂多孔碳原位生长的硅酸锰。

In-situ grown manganese silicate from biomass-derived heteroatom-doped porous carbon for supercapacitors with high performance.

机构信息

School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.

School of Chemistry, Dalian University of Technology, Dalian 116024, PR China.

出版信息

J Colloid Interface Sci. 2019 Jan 15;534:142-155. doi: 10.1016/j.jcis.2018.09.026. Epub 2018 Sep 8.

Abstract

Supercapacitor performance is reported for manganese silicate hybridized carbon materials (MnSi-C) that is derived from natural bamboo leaves. The in-situ generated manganese silicate is in good distribution by a simple hydrothermal treatment without the addition of another controlling agent. We also study the performance of MnSi-C as a single electrode and a cathode for fabrication of asymmetric supercapacitor device with a Ni(OH) anode. Remarkably, the single electrode MnSi-C-3 delivered a capacity of 162.2 F g at a current density of 0.5 A g. The cyclic performance of single electrode MnSi-C-3 maintains high capacitance retention of 85% after 10,000 cycles of charge-discharge. By assembled MnSi-C-3 with Ni(OH), the asymmetric supercapacitor device shows a capacity of 438.5 mF cm at a scan rate of 4 mA cm. The device exhibits an optimal electrochemical performance with an energy density of 3 mWh cm (24.6 Wh kg) and power density of 130.4 mW cm (604.8 W kg). A reasonable mechanism of in-situ generated manganese silicate on the surface of carbon is proposed based on the experimental data and existed theories. This MnSi-C nanocomposite proves to be a promising electrode material for high energy supercapacitor.

摘要

报道了一种源自天然竹叶的锰硅混合碳材料(MnSi-C)的超级电容器性能。通过简单的水热处理原位生成的锰硅,无需添加其他控制剂就能实现良好的分布。我们还研究了 MnSi-C 作为单一电极以及作为 Ni(OH) 阳极制备非对称超级电容器器件的阴极的性能。值得注意的是,单一电极 MnSi-C-3 在 0.5 A g 的电流密度下表现出 162.2 F g 的容量。经过 10000 次充放电循环后,单一电极 MnSi-C-3 的循环性能仍保持着 85%的高电容保持率。通过将 MnSi-C-3 与 Ni(OH) 组装成非对称超级电容器器件,在 4 mA cm 的扫描速率下可获得 438.5 mF cm 的容量。该器件具有 3 mWh cm 的能量密度(24.6 Wh kg)和 130.4 mW cm 的功率密度(604.8 W kg),表现出了最佳的电化学性能。根据实验数据和现有理论,提出了在碳表面原位生成锰硅的合理机制。这种 MnSi-C 纳米复合材料被证明是一种很有前途的高能超级电容器电极材料。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验