Graduate Program in Neurobiology, Duke University, Durham, NC, 27710, USA; Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA.
Neurobiology Department, Duke University School of Medicine, Durham, NC, 27710, USA.
Neuron. 2018 Oct 10;100(1):216-228.e6. doi: 10.1016/j.neuron.2018.08.021. Epub 2018 Sep 13.
Direction-selective ganglion cells (DSGCs) deliver signals from the retina to multiple brain areas to indicate the presence and direction of motion. Delivering reliable signals in response to motion is critical across light levels. Here we determine how populations of DSGCs adapt to changes in light level, from moonlight to daylight. Using large-scale measurements of neural activity, we demonstrate that the population of DSGCs switches encoding strategies across light levels. Specifically, the direction tuning of superior (upward)-preferring ON-OFF DSGCs becomes broader at low light levels, whereas other DSGCs exhibit stable tuning. Using a conditional knockout of gap junctions, we show that this differential adaptation among superior-preferring ON-OFF DSGCs is caused by connexin36-mediated electrical coupling and differences in effective GABAergic inhibition. Furthermore, this adaptation strategy is beneficial for balancing motion detection and direction estimation at the lower signal-to-noise ratio encountered at night. These results provide insights into how light adaptation impacts motion encoding in the retina.
方向选择性神经节细胞(DSGCs)将视网膜的信号传递到多个大脑区域,以指示运动的存在和方向。在不同光照水平下可靠地传递信号至关重要。在这里,我们确定了 DSGC 群体如何适应光照水平的变化,从月光到日光。通过对神经活动的大规模测量,我们证明 DSGC 群体在不同光照水平下切换编码策略。具体来说,在低光照水平下,上向(向上)优先的 ON-OFF DSGC 的方向调谐变宽,而其他 DSGC 则表现出稳定的调谐。使用缝隙连接的条件敲除,我们表明,这种上向优先的 ON-OFF DSGC 之间的差异适应是由连接蛋白 36 介导的电耦合和有效 GABA 抑制的差异引起的。此外,这种适应策略有利于平衡夜间信号噪声比较低时的运动检测和方向估计。这些结果为光照适应如何影响视网膜中的运动编码提供了深入了解。