Sun Jiawei, Hu Huatian, Zheng Di, Zhang Daxiao, Deng Qian, Zhang Shunping, Xu Hongxing
The Institute for Advanced Studies , Wuhan University , Wuhan 430072 , China.
School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education , Wuhan University , Wuhan 430072 , China.
ACS Nano. 2018 Oct 23;12(10):10393-10402. doi: 10.1021/acsnano.8b05880. Epub 2018 Sep 20.
The interaction between plasmons in metal nanostructures and excitons in layered materials attracts recent interests due to its fascinating properties inherited from the two constituents, e.g., the high tunability on its spectral or spatial properties from the plasmonic component, and the large optical nonlinearity or light emitting properties from the excitonic counterpart. Here, we demonstrate light-emitting plexcitons from the coupling between the neutral excitons in monolayer WSe and highly confined nanocavity plasmons in the nanocube-over-mirror system. We observe, simultaneously, an anticrossing dispersion curve of the hybrid system in the dark-field scattering spectrum and a 1700 times enhancement in the photoluminescence. We attribute the large photoluminescence enhancement to the increased local density of states by both the plasmonic and excitonic constituents in the intermediate coupling regime. In addition, increasing the confinement of the hybrid systems is achieved by shrinking down the size of the hot spot within the gap between the nanocube and the metal film. Numerical calculations reproduce the experimental observations and provide the effective number of excitons taking part in the interaction. This highly compact system provides a room temperature testing platform for quantum cavity electromagnetics at the deep subwavelength scale.
金属纳米结构中的等离激元和层状材料中的激子之间的相互作用,因其继承自两种组分的迷人特性而吸引了近期的研究兴趣,例如,来自等离激元组分的光谱或空间特性的高可调性,以及来自激子对应物的大光学非线性或发光特性。在此,我们展示了单层WSe₂中的中性激子与纳米立方体-镜面系统中高度受限的纳米腔等离激元之间耦合产生的发光复合激子。我们同时在暗场散射光谱中观察到混合系统的反交叉色散曲线,以及光致发光增强1700倍。我们将大的光致发光增强归因于中间耦合 regime 中等离激元和激子组分导致的局部态密度增加。此外,通过缩小纳米立方体与金属膜之间间隙内热点的尺寸,实现了混合系统限制的增加。数值计算再现了实验观察结果,并提供了参与相互作用的激子的有效数量。这个高度紧凑的系统为深亚波长尺度的量子腔电磁学提供了一个室温测试平台。