Zhang Min, Tian Yuan, Chen Xingzhou, Sun Zheng, Zhu Xiaolong, Wu Jian
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200241, China.
Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China.
Nanophotonics. 2023 Jul 10;12(16):3267-3275. doi: 10.1515/nanoph-2023-0162. eCollection 2023 Aug.
Modifying the light-matter interactions in the plasmonic structures and the two-dimensional (2D) materials not only advances the deeper understanding of the fundamental studies of many-body physics but also provides the opportunities for exploration of novel 2D plasmonic polaritonic devices. Here, we report the plasmon-exciton coupling in the hybrid system with a plasmonic metasurface which can confine the electric field in an extremely compact mode volume. Because of the 2D feature of the designed and fabricated Al plasmonic metasurface, the confined electronic field is distributed in the plane with the same orientation as that of the exciton dipole moment in the transition metal dichalcogenides monolayers. By finely tuning the geometric size of the plasmonic nanostructures, we can significantly modify the dispersion relation of the coupled plasmon and the exciton. Our system shows a strong coupling behavior with an achieved Rabi splitting up to ∼200 meV at room temperature, in ambient conditions. The effective tailoring of the plasmon-exciton coupling with the plasmonic metasurfaces provides the testing platform for studying the quantum electromagnetics at the subwavelength scale as well as exploring plasmonic polariton Bose-Einstein condensation at room temperature.
调控等离子体结构和二维(2D)材料中的光与物质相互作用,不仅有助于更深入地理解多体物理的基础研究,还为探索新型二维等离子体极化激元器件提供了机会。在此,我们报道了在具有等离子体超表面的混合系统中的等离子体 - 激子耦合,该超表面能够以极其紧凑的模式体积限制电场。由于所设计和制造的铝等离子体超表面具有二维特性,受限的电场在平面内的分布方向与过渡金属二卤化物单层中激子偶极矩的方向相同。通过精细调节等离子体纳米结构的几何尺寸,我们可以显著改变耦合等离子体和激子的色散关系。我们的系统在室温、环境条件下表现出强耦合行为,实现的拉比分裂高达约200毫电子伏特。通过等离子体超表面有效调控等离子体 - 激子耦合,为研究亚波长尺度的量子电磁学以及探索室温下的等离子体极化激元玻色 - 爱因斯坦凝聚提供了测试平台。