Teodoro Afonso M, Bioucas-Dias Jose M, Figueiredo Mario A T
IEEE Trans Image Process. 2018 Sep 12. doi: 10.1109/TIP.2018.2869727.
We propose a new approach to image fusion, inspired by the recent plug-and-play (PnP) framework. In PnP, a denoiser is treated as a black-box and plugged into an iterative algorithm, taking the place of the proximity operator of some convex regularizer, which is formally equivalent to a denoising operation. This approach offers flexibility and excellent performance, but convergence may be hard to analyze, as most state-of-the-art denoisers lack an explicit underlying objective function. Here, we propose using a scene-adapted denoiser (i.e., targeted to the specific scene being imaged) plugged into the iterations of the alternating direction method of multipliers (ADMM). This approach, which is a natural choice for image fusion problems, not only yields state-of-the-art results, but it also allows proving convergence of the resulting algorithm. The proposed method is tested on two different problems: hyperspectral fusion/sharpening and fusion of blurred-noisy image pairs.
受近期即插即用(PnP)框架的启发,我们提出了一种新的图像融合方法。在PnP中,去噪器被视为一个黑盒,并被插入到一个迭代算法中,取代了一些凸正则化器的邻近算子,这在形式上等同于一个去噪操作。这种方法具有灵活性和出色的性能,但由于大多数最先进的去噪器缺乏明确的底层目标函数,收敛性可能难以分析。在这里,我们建议使用一个场景自适应去噪器(即针对正在成像的特定场景)插入到乘子交替方向法(ADMM)的迭代中。这种方法是图像融合问题的自然选择,不仅能产生最先进的结果,还能证明所得算法的收敛性。我们在两个不同的问题上测试了所提出的方法:高光谱融合/锐化和模糊噪声图像对的融合。