Suppr超能文献

用于磁共振图像恢复的去噪广义期望一致逼近

Denoising Generalized Expectation-Consistent Approximation for MR Image Recovery.

作者信息

Shastri Saurav K, Ahmad Rizwan, Metzler Christopher A, Schniter Philip

机构信息

Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43201, USA.

Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH 43201, USA.

出版信息

IEEE J Sel Areas Inf Theory. 2022 Sep;3(3):528-542. doi: 10.1109/JSAIT.2022.3207109. Epub 2022 Sep 15.

Abstract

To solve inverse problems, plug-and-play (PnP) methods replace the proximal step in a convex optimization algorithm with a call to an application-specific denoiser, often implemented using a deep neural network (DNN). Although such methods yield accurate solutions, they can be improved. For example, denoisers are usually designed/trained to remove white Gaussian noise, but the denoiser input error in PnP algorithms is usually far from white or Gaussian. Approximate message passing (AMP) methods provide white and Gaussian denoiser input error, but only when the forward operator is sufficiently random. In this work, for Fourier-based forward operators, we propose a PnP algorithm based on generalized expectation-consistent (GEC) approximation-a close cousin of AMP-that offers predictable error statistics at each iteration, as well as a new DNN denoiser that leverages those statistics. We apply our approach to magnetic resonance (MR) image recovery and demonstrate its advantages over existing PnP and AMP methods.

摘要

为了解决逆问题,即插即用(PnP)方法用对特定应用去噪器的调用取代了凸优化算法中的近端步骤,这种去噪器通常使用深度神经网络(DNN)实现。尽管这类方法能产生精确的解,但仍有改进的空间。例如,去噪器通常设计/训练用于去除白高斯噪声,但PnP算法中的去噪器输入误差通常远非白色或高斯分布。近似消息传递(AMP)方法能提供白色且高斯分布的去噪器输入误差,但前提是前向算子足够随机。在这项工作中,对于基于傅里叶的前向算子,我们提出了一种基于广义期望一致(GEC)近似的PnP算法——AMP的近亲——它在每次迭代时都能提供可预测的误差统计信息,以及一种利用这些统计信息的新型DNN去噪器。我们将我们的方法应用于磁共振(MR)图像恢复,并证明了它相对于现有PnP和AMP方法的优势。

相似文献

1
Denoising Generalized Expectation-Consistent Approximation for MR Image Recovery.
IEEE J Sel Areas Inf Theory. 2022 Sep;3(3):528-542. doi: 10.1109/JSAIT.2022.3207109. Epub 2022 Sep 15.
2
EXPECTATION CONSISTENT PLUG-AND-PLAY FOR MRI.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:8667-8671. doi: 10.1109/icassp43922.2022.9747424. Epub 2022 Apr 27.
3
MRI RECOVERY WITH A SELF-CALIBRATED DENOISER.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1351-1355. doi: 10.1109/icassp43922.2022.9746785. Epub 2022 Apr 27.
4
On Plug-and-Play Regularization Using Linear Denoisers.
IEEE Trans Image Process. 2021;30:4802-4813. doi: 10.1109/TIP.2021.3075092. Epub 2021 May 7.
5
A Convergent Image Fusion Algorithm Using Scene-Adapted Gaussian-Mixture-Based Denoising.
IEEE Trans Image Process. 2018 Sep 12. doi: 10.1109/TIP.2018.2869727.
6
Versatile Denoising-Based Approximate Message Passing for Compressive Sensing.
IEEE Trans Image Process. 2023;32:2761-2775. doi: 10.1109/TIP.2023.3274967. Epub 2023 May 19.
7
Deep denoiser prior driven relaxed iterated Tikhonov method for low-count PET image restoration.
Phys Med Biol. 2024 Aug 5;69(16). doi: 10.1088/1361-6560/ad67a3.
8
Plug-and-Play Image Restoration With Deep Denoiser Prior.
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6360-6376. doi: 10.1109/TPAMI.2021.3088914. Epub 2022 Sep 14.
9
Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising.
IEEE Trans Image Process. 2017 Jul;26(7):3142-3155. doi: 10.1109/TIP.2017.2662206. Epub 2017 Feb 1.
10
Adapting low-dose CT denoisers for texture preservation using zero-shot local noise-level matching.
Med Phys. 2024 Jun;51(6):4181-4200. doi: 10.1002/mp.17015. Epub 2024 Mar 13.

本文引用的文献

1
2
EXPECTATION CONSISTENT PLUG-AND-PLAY FOR MRI.
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:8667-8671. doi: 10.1109/icassp43922.2022.9747424. Epub 2022 Apr 27.
3
Neural networks can learn to utilize correlated auxiliary noise.
Sci Rep. 2021 Nov 3;11(1):21624. doi: 10.1038/s41598-021-00502-4.
4
Plug-and-Play Methods for Magnetic Resonance Imaging: Using Denoisers for Image Recovery.
IEEE Signal Process Mag. 2020 Jan;37(1):105-116. doi: 10.1109/msp.2019.2949470. Epub 2020 Jan 17.
5
Deep-Learning Methods for Parallel Magnetic Resonance Imaging Reconstruction: A Survey of the Current Approaches, Trends, and Issues.
IEEE Signal Process Mag. 2020 Jan;37(1):128-140. doi: 10.1109/MSP.2019.2950640. Epub 2020 Jan 20.
6
Uncertainty Quantification in Deep MRI Reconstruction.
IEEE Trans Med Imaging. 2021 Jan;40(1):239-250. doi: 10.1109/TMI.2020.3025065. Epub 2020 Dec 29.
7
Optimization Methods for Magnetic Resonance Image Reconstruction: Key Models and Optimization Algorithms.
IEEE Signal Process Mag. 2020 Jan;37(1):33-40. doi: 10.1109/MSP.2019.2943645. Epub 2020 Jan 17.
8
Regularization by Denoising: Clarifications and New Interpretations.
IEEE Trans Comput Imaging. 2019 Mar;5(1):52-67. doi: 10.1109/TCI.2018.2880326. Epub 2018 Nov 9.
9
FFDNet: Toward a Fast and Flexible Solution for CNN based Image Denoising.
IEEE Trans Image Process. 2018 May 25. doi: 10.1109/TIP.2018.2839891.
10
DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction.
IEEE Trans Med Imaging. 2018 Jun;37(6):1310-1321. doi: 10.1109/TMI.2017.2785879.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验