Shastri Saurav K, Ahmad Rizwan, Metzler Christopher A, Schniter Philip
Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43201, USA.
Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH 43201, USA.
IEEE J Sel Areas Inf Theory. 2022 Sep;3(3):528-542. doi: 10.1109/JSAIT.2022.3207109. Epub 2022 Sep 15.
To solve inverse problems, plug-and-play (PnP) methods replace the proximal step in a convex optimization algorithm with a call to an application-specific denoiser, often implemented using a deep neural network (DNN). Although such methods yield accurate solutions, they can be improved. For example, denoisers are usually designed/trained to remove white Gaussian noise, but the denoiser input error in PnP algorithms is usually far from white or Gaussian. Approximate message passing (AMP) methods provide white and Gaussian denoiser input error, but only when the forward operator is sufficiently random. In this work, for Fourier-based forward operators, we propose a PnP algorithm based on generalized expectation-consistent (GEC) approximation-a close cousin of AMP-that offers predictable error statistics at each iteration, as well as a new DNN denoiser that leverages those statistics. We apply our approach to magnetic resonance (MR) image recovery and demonstrate its advantages over existing PnP and AMP methods.
为了解决逆问题,即插即用(PnP)方法用对特定应用去噪器的调用取代了凸优化算法中的近端步骤,这种去噪器通常使用深度神经网络(DNN)实现。尽管这类方法能产生精确的解,但仍有改进的空间。例如,去噪器通常设计/训练用于去除白高斯噪声,但PnP算法中的去噪器输入误差通常远非白色或高斯分布。近似消息传递(AMP)方法能提供白色且高斯分布的去噪器输入误差,但前提是前向算子足够随机。在这项工作中,对于基于傅里叶的前向算子,我们提出了一种基于广义期望一致(GEC)近似的PnP算法——AMP的近亲——它在每次迭代时都能提供可预测的误差统计信息,以及一种利用这些统计信息的新型DNN去噪器。我们将我们的方法应用于磁共振(MR)图像恢复,并证明了它相对于现有PnP和AMP方法的优势。