Suppr超能文献

用于磁共振图像恢复的去噪广义期望一致逼近

Denoising Generalized Expectation-Consistent Approximation for MR Image Recovery.

作者信息

Shastri Saurav K, Ahmad Rizwan, Metzler Christopher A, Schniter Philip

机构信息

Dept. of Electrical and Computer Engineering, The Ohio State University, Columbus, OH 43201, USA.

Dept. of Biomedical Engineering, The Ohio State University, Columbus, OH 43201, USA.

出版信息

IEEE J Sel Areas Inf Theory. 2022 Sep;3(3):528-542. doi: 10.1109/JSAIT.2022.3207109. Epub 2022 Sep 15.

Abstract

To solve inverse problems, plug-and-play (PnP) methods replace the proximal step in a convex optimization algorithm with a call to an application-specific denoiser, often implemented using a deep neural network (DNN). Although such methods yield accurate solutions, they can be improved. For example, denoisers are usually designed/trained to remove white Gaussian noise, but the denoiser input error in PnP algorithms is usually far from white or Gaussian. Approximate message passing (AMP) methods provide white and Gaussian denoiser input error, but only when the forward operator is sufficiently random. In this work, for Fourier-based forward operators, we propose a PnP algorithm based on generalized expectation-consistent (GEC) approximation-a close cousin of AMP-that offers predictable error statistics at each iteration, as well as a new DNN denoiser that leverages those statistics. We apply our approach to magnetic resonance (MR) image recovery and demonstrate its advantages over existing PnP and AMP methods.

摘要

为了解决逆问题,即插即用(PnP)方法用对特定应用去噪器的调用取代了凸优化算法中的近端步骤,这种去噪器通常使用深度神经网络(DNN)实现。尽管这类方法能产生精确的解,但仍有改进的空间。例如,去噪器通常设计/训练用于去除白高斯噪声,但PnP算法中的去噪器输入误差通常远非白色或高斯分布。近似消息传递(AMP)方法能提供白色且高斯分布的去噪器输入误差,但前提是前向算子足够随机。在这项工作中,对于基于傅里叶的前向算子,我们提出了一种基于广义期望一致(GEC)近似的PnP算法——AMP的近亲——它在每次迭代时都能提供可预测的误差统计信息,以及一种利用这些统计信息的新型DNN去噪器。我们将我们的方法应用于磁共振(MR)图像恢复,并证明了它相对于现有PnP和AMP方法的优势。

相似文献

1
Denoising Generalized Expectation-Consistent Approximation for MR Image Recovery.用于磁共振图像恢复的去噪广义期望一致逼近
IEEE J Sel Areas Inf Theory. 2022 Sep;3(3):528-542. doi: 10.1109/JSAIT.2022.3207109. Epub 2022 Sep 15.
2
EXPECTATION CONSISTENT PLUG-AND-PLAY FOR MRI.用于磁共振成像的期望一致即插即用方法
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:8667-8671. doi: 10.1109/icassp43922.2022.9747424. Epub 2022 Apr 27.
3
MRI RECOVERY WITH A SELF-CALIBRATED DENOISER.使用自校准去噪器的磁共振成像恢复
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:1351-1355. doi: 10.1109/icassp43922.2022.9746785. Epub 2022 Apr 27.
4
On Plug-and-Play Regularization Using Linear Denoisers.关于使用线性去噪器的即插即用正则化
IEEE Trans Image Process. 2021;30:4802-4813. doi: 10.1109/TIP.2021.3075092. Epub 2021 May 7.
6
Versatile Denoising-Based Approximate Message Passing for Compressive Sensing.基于变分去噪的压缩感知近似消息传递算法
IEEE Trans Image Process. 2023;32:2761-2775. doi: 10.1109/TIP.2023.3274967. Epub 2023 May 19.
8
Plug-and-Play Image Restoration With Deep Denoiser Prior.基于深度去噪器先验的即插即用图像恢复
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):6360-6376. doi: 10.1109/TPAMI.2021.3088914. Epub 2022 Sep 14.

本文引用的文献

2
EXPECTATION CONSISTENT PLUG-AND-PLAY FOR MRI.用于磁共振成像的期望一致即插即用方法
Proc IEEE Int Conf Acoust Speech Signal Process. 2022 May;2022:8667-8671. doi: 10.1109/icassp43922.2022.9747424. Epub 2022 Apr 27.
6
Uncertainty Quantification in Deep MRI Reconstruction.深度 MRI 重建中的不确定性量化。
IEEE Trans Med Imaging. 2021 Jan;40(1):239-250. doi: 10.1109/TMI.2020.3025065. Epub 2020 Dec 29.
8
Regularization by Denoising: Clarifications and New Interpretations.通过去噪进行正则化:阐释与新解读
IEEE Trans Comput Imaging. 2019 Mar;5(1):52-67. doi: 10.1109/TCI.2018.2880326. Epub 2018 Nov 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验